dynarmic/src/backend/x64/emit_x64_floating_point.cpp
MerryMage 27427595b7 emit_x64_floating_point: EmitFPToFixed: maxsd optimization
maxsd is not required when doing a signed conversion, because x64
produces a 0x80...00 value for out of range values.
2020-04-22 20:53:46 +01:00

1269 lines
43 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <type_traits>
#include <utility>
#include "backend/x64/abi.h"
#include "backend/x64/block_of_code.h"
#include "backend/x64/emit_x64.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/fp/fpcr.h"
#include "common/fp/fpsr.h"
#include "common/fp/info.h"
#include "common/fp/op.h"
#include "common/fp/rounding_mode.h"
#include "common/fp/util.h"
#include "common/mp/cartesian_product.h"
#include "common/mp/integer.h"
#include "common/mp/list.h"
#include "common/mp/lut.h"
#include "common/mp/to_tuple.h"
#include "common/mp/vlift.h"
#include "common/mp/vllift.h"
#include "frontend/ir/basic_block.h"
#include "frontend/ir/microinstruction.h"
#include "frontend/ir/opcodes.h"
namespace Dynarmic::BackendX64 {
using namespace Xbyak::util;
namespace mp = Dynarmic::Common::mp;
namespace {
const Xbyak::Reg64 INVALID_REG = Xbyak::Reg64(-1);
constexpr u64 f32_negative_zero = 0x80000000u;
constexpr u64 f32_nan = 0x7fc00000u;
constexpr u64 f32_non_sign_mask = 0x7fffffffu;
constexpr u64 f32_smallest_normal = 0x00800000u;
constexpr u64 f64_negative_zero = 0x8000000000000000u;
constexpr u64 f64_nan = 0x7ff8000000000000u;
constexpr u64 f64_non_sign_mask = 0x7fffffffffffffffu;
constexpr u64 f64_smallest_normal = 0x0010000000000000u;
constexpr u64 f64_penultimate_positive_denormal = 0x000ffffffffffffeu;
constexpr u64 f64_max_s32 = 0x41dfffffffc00000u; // 2147483647 as a double
constexpr u64 f64_min_u32 = 0x0000000000000000u; // 0 as a double
constexpr u64 f64_max_u32 = 0x41efffffffe00000u; // 4294967295 as a double
constexpr u64 f64_max_s64_lim = 0x43e0000000000000u; // 2^63 as a double (actual maximum unrepresentable)
constexpr u64 f64_min_u64 = 0x0000000000000000u; // 0 as a double
constexpr u64 f64_max_u64_lim = 0x43f0000000000000u; // 2^64 as a double (actual maximum unrepresentable)
template<size_t fsize, typename T>
T ChooseOnFsize([[maybe_unused]] T f32, [[maybe_unused]] T f64) {
static_assert(fsize == 32 || fsize == 64, "fsize must be either 32 or 64");
if constexpr (fsize == 32) {
return f32;
} else {
return f64;
}
}
#define FCODE(NAME) (code.*ChooseOnFsize<fsize>(&Xbyak::CodeGenerator::NAME##s, &Xbyak::CodeGenerator::NAME##d))
template<size_t fsize>
void DenormalsAreZero(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Reg64 gpr_scratch) {
Xbyak::Label end;
if constexpr (fsize == 32) {
code.movd(gpr_scratch.cvt32(), xmm_value);
code.and_(gpr_scratch.cvt32(), u32(0x7FFFFFFF));
code.sub(gpr_scratch.cvt32(), u32(1));
code.cmp(gpr_scratch.cvt32(), u32(0x007FFFFE));
} else {
auto mask = code.MConst(xword, f64_non_sign_mask);
mask.setBit(64);
auto penult_denormal = code.MConst(xword, f64_penultimate_positive_denormal);
penult_denormal.setBit(64);
code.movq(gpr_scratch, xmm_value);
code.and_(gpr_scratch, mask);
code.sub(gpr_scratch, u32(1));
code.cmp(gpr_scratch, penult_denormal);
}
// We need to report back whether we've found a denormal on input.
// SSE doesn't do this for us when SSE's DAZ is enabled.
code.ja(end);
code.andps(xmm_value, code.MConst(xword, fsize == 32 ? f32_negative_zero : f64_negative_zero));
code.mov(dword[r15 + code.GetJitStateInfo().offsetof_FPSCR_IDC], u32(1 << 7));
code.L(end);
}
template<size_t fsize>
void ZeroIfNaN(BlockOfCode& code, Xbyak::Xmm xmm_value, Xbyak::Xmm xmm_scratch) {
code.xorps(xmm_scratch, xmm_scratch);
FCODE(cmpords)(xmm_scratch, xmm_value); // true mask when ordered (i.e.: when not an NaN)
code.pand(xmm_value, xmm_scratch);
}
template<size_t fsize>
void ForceToDefaultNaN(BlockOfCode& code, Xbyak::Xmm result) {
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
FCODE(vcmpunords)(xmm0, result, result);
FCODE(blendvp)(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan));
} else {
Xbyak::Label end;
FCODE(ucomis)(result, result);
code.jnp(end);
code.movaps(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan));
code.L(end);
}
}
template<size_t fsize>
Xbyak::Label ProcessNaN(BlockOfCode& code, Xbyak::Xmm a) {
Xbyak::Label nan, end;
FCODE(ucomis)(a, a);
code.jp(nan, code.T_NEAR);
code.SwitchToFarCode();
code.L(nan);
code.orps(a, code.MConst(xword, fsize == 32 ? 0x00400000 : 0x0008'0000'0000'0000));
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
return end;
}
template<size_t fsize>
void PostProcessNaN(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm tmp) {
if constexpr (fsize == 32) {
code.movaps(tmp, result);
code.cmpunordps(tmp, tmp);
code.pslld(tmp, 31);
code.xorps(result, tmp);
} else {
code.movaps(tmp, result);
code.cmpunordpd(tmp, tmp);
code.psllq(tmp, 63);
code.xorps(result, tmp);
}
}
// This is necessary because x86 and ARM differ in they way they return NaNs from floating point operations
//
// ARM behaviour:
// op1 op2 result
// SNaN SNaN/QNaN op1
// QNaN SNaN op2
// QNaN QNaN op1
// SNaN/QNaN other op1
// other SNaN/QNaN op2
//
// x86 behaviour:
// op1 op2 result
// SNaN/QNaN SNaN/QNaN op1
// SNaN/QNaN other op1
// other SNaN/QNaN op2
//
// With ARM: SNaNs take priority. With x86: it doesn't matter.
//
// From the above we can see what differs between the architectures is
// the case when op1 == QNaN and op2 == SNaN.
//
// We assume that registers op1 and op2 are read-only. This function also trashes xmm0.
// We allow for the case where op1 and result are the same register. We do not read from op1 once result is written to.
template<size_t fsize>
void EmitPostProcessNaNs(BlockOfCode& code, Xbyak::Xmm result, Xbyak::Xmm op1, Xbyak::Xmm op2, Xbyak::Reg64 tmp, Xbyak::Label end) {
using FPT = mp::unsigned_integer_of_size<fsize>;
constexpr FPT exponent_mask = FP::FPInfo<FPT>::exponent_mask;
constexpr FPT mantissa_msb = FP::FPInfo<FPT>::mantissa_msb;
constexpr u8 mantissa_msb_bit = static_cast<u8>(FP::FPInfo<FPT>::explicit_mantissa_width - 1);
// At this point we know that at least one of op1 and op2 is a NaN.
// Thus in op1 ^ op2 at least one of the two would have all 1 bits in the exponent.
// Keeping in mind xor is commutative, there are only four cases:
// SNaN ^ SNaN/Inf -> exponent == 0, mantissa_msb == 0
// QNaN ^ QNaN -> exponent == 0, mantissa_msb == 0
// QNaN ^ SNaN/Inf -> exponent == 0, mantissa_msb == 1
// SNaN/QNaN ^ Otherwise -> exponent != 0, mantissa_msb == ?
//
// We're only really interested in op1 == QNaN and op2 == SNaN,
// so we filter out everything else.
//
// We do it this way instead of checking that op1 is QNaN because
// op1 == QNaN && op2 == QNaN is the most common case. With this method
// that case would only require one branch.
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vxorps(xmm0, op1, op2);
} else {
code.movaps(xmm0, op1);
code.xorps(xmm0, op2);
}
constexpr size_t shift = fsize == 32 ? 0 : 48;
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), xmm0);
} else {
// We do this to avoid requiring 64-bit immediates
code.pextrw(tmp.cvt32(), xmm0, shift / 16);
}
code.and_(tmp.cvt32(), static_cast<u32>((exponent_mask | mantissa_msb) >> shift));
code.cmp(tmp.cvt32(), static_cast<u32>(mantissa_msb >> shift));
code.jne(end, code.T_NEAR);
// If we're here there are four cases left:
// op1 == SNaN && op2 == QNaN
// op1 == Inf && op2 == QNaN
// op1 == QNaN && op2 == SNaN <<< The problematic case
// op1 == QNaN && op2 == Inf
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), op2);
code.shl(tmp.cvt32(), 32 - mantissa_msb_bit);
} else {
code.movq(tmp, op2);
code.shl(tmp, 64 - mantissa_msb_bit);
}
// If op2 is a SNaN, CF = 0 and ZF = 0.
code.jna(end, code.T_NEAR);
// Silence the SNaN as required by spec.
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vorps(result, op2, code.MConst(xword, mantissa_msb));
} else {
code.movaps(result, op2);
code.orps(result, code.MConst(xword, mantissa_msb));
}
code.jmp(end, code.T_NEAR);
}
template <size_t fsize, typename Function>
void FPTwoOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Label end;
Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
if (ctx.AccurateNaN() && !ctx.FPSCR_DN()) {
end = ProcessNaN<fsize>(code, result);
}
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, result);
} else {
fn(result);
}
if (ctx.FPSCR_DN()) {
ForceToDefaultNaN<fsize>(code, result);
} else if (ctx.AccurateNaN()) {
PostProcessNaN<fsize>(code, result, ctx.reg_alloc.ScratchXmm());
}
code.L(end);
ctx.reg_alloc.DefineValue(inst, result);
}
template <size_t fsize, typename Function>
void FPThreeOp(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, Function fn) {
using FPT = mp::unsigned_integer_of_size<fsize>;
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (ctx.FPSCR_DN() || !ctx.AccurateNaN()) {
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, operand);
} else {
fn(result, operand);
}
if (ctx.AccurateNaN()) {
ForceToDefaultNaN<fsize>(code, result);
}
ctx.reg_alloc.DefineValue(inst, result);
return;
}
const Xbyak::Xmm op1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm op2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
Xbyak::Label end, nan, op_are_nans;
code.movaps(result, op1);
if constexpr (std::is_member_function_pointer_v<Function>) {
(code.*fn)(result, op2);
} else {
fn(result, op2);
}
FCODE(ucomis)(result, result);
code.jp(nan, code.T_NEAR);
code.L(end);
code.SwitchToFarCode();
code.L(nan);
FCODE(ucomis)(op1, op2);
code.jp(op_are_nans);
// Here we must return a positive NaN, because the indefinite value on x86 is a negative NaN!
code.movaps(result, code.MConst(xword, FP::FPInfo<FPT>::DefaultNaN()));
code.jmp(end, code.T_NEAR);
code.L(op_are_nans);
EmitPostProcessNaNs<fsize>(code, result, op1, op2, tmp, end);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
}
} // anonymous namespace
void EmitX64::EmitFPAbs32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
code.pand(result, code.MConst(xword, f32_non_sign_mask));
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPAbs64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
code.pand(result, code.MConst(xword, f64_non_sign_mask));
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPNeg32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
code.pxor(result, code.MConst(xword, f32_negative_zero));
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPNeg64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
code.pxor(result, code.MConst(xword, f64_negative_zero));
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPAdd32(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<32>(code, ctx, inst, &Xbyak::CodeGenerator::addss);
}
void EmitX64::EmitFPAdd64(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<64>(code, ctx, inst, &Xbyak::CodeGenerator::addsd);
}
void EmitX64::EmitFPDiv32(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<32>(code, ctx, inst, &Xbyak::CodeGenerator::divss);
}
void EmitX64::EmitFPDiv64(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<64>(code, ctx, inst, &Xbyak::CodeGenerator::divsd);
}
template<size_t fsize, bool is_max>
static void EmitFPMinMax(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm operand = ctx.reg_alloc.UseScratchXmm(args[1]);
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 gpr_scratch = ctx.reg_alloc.ScratchGpr();
if (ctx.FPSCR_FTZ()) {
DenormalsAreZero<fsize>(code, result, gpr_scratch);
DenormalsAreZero<fsize>(code, operand, gpr_scratch);
}
Xbyak::Label equal, end, nan;
FCODE(ucomis)(result, operand);
code.jz(equal, code.T_NEAR);
if constexpr (is_max) {
FCODE(maxs)(result, operand);
} else {
FCODE(mins)(result, operand);
}
code.L(end);
code.SwitchToFarCode();
code.L(equal);
code.jp(nan);
if constexpr (is_max) {
code.andps(result, operand);
} else {
code.orps(result, operand);
}
code.jmp(end);
code.L(nan);
if (ctx.FPSCR_DN() || !ctx.AccurateNaN()) {
code.movaps(result, code.MConst(xword, fsize == 32 ? f32_nan : f64_nan));
code.jmp(end);
} else {
code.movaps(tmp, result);
FCODE(adds)(result, operand);
EmitPostProcessNaNs<fsize>(code, result, tmp, operand, gpr_scratch, end);
}
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
}
template<size_t fsize, bool is_max>
static void EmitFPMinMaxNumeric(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>;
constexpr u8 mantissa_msb_bit = static_cast<u8>(FP::FPInfo<FPT>::explicit_mantissa_width - 1);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm op1 = ctx.reg_alloc.UseScratchXmm(args[0]);
const Xbyak::Xmm op2 = ctx.reg_alloc.UseScratchXmm(args[1]); // Result stored here!
Xbyak::Reg tmp = ctx.reg_alloc.ScratchGpr();
tmp.setBit(fsize);
const auto move_to_tmp = [&](const Xbyak::Xmm& xmm) {
if constexpr (fsize == 32) {
code.movd(tmp.cvt32(), xmm);
} else {
code.movq(tmp.cvt64(), xmm);
}
};
if (ctx.FPSCR_FTZ()) {
DenormalsAreZero<fsize>(code, op1, tmp.cvt64());
DenormalsAreZero<fsize>(code, op2, tmp.cvt64());
}
Xbyak::Label end, z, nan, op2_is_nan, snan, maybe_both_nan, normal;
FCODE(ucomis)(op1, op2);
code.jz(z, code.T_NEAR);
code.L(normal);
if constexpr (is_max) {
FCODE(maxs)(op2, op1);
} else {
FCODE(mins)(op2, op1);
}
code.L(end);
code.SwitchToFarCode();
code.L(z);
code.jp(nan);
if constexpr (is_max) {
code.andps(op2, op1);
} else {
code.orps(op2, op1);
}
code.jmp(end);
// NaN requirements:
// op1 op2 result
// SNaN anything op1
// !SNaN SNaN op2
// QNaN !NaN op2
// !NaN QNaN op1
// QNaN QNaN op1
code.L(nan);
FCODE(ucomis)(op1, op1);
code.jnp(op2_is_nan);
// op1 is NaN
move_to_tmp(op1);
code.bt(tmp, mantissa_msb_bit);
code.jc(maybe_both_nan);
if (ctx.FPSCR_DN()) {
code.L(snan);
code.movaps(op2, code.MConst(xword, FP::FPInfo<FPT>::DefaultNaN()));
code.jmp(end);
} else {
code.movaps(op2, op1);
code.L(snan);
code.orps(op2, code.MConst(xword, FP::FPInfo<FPT>::mantissa_msb));
code.jmp(end);
}
code.L(maybe_both_nan);
FCODE(ucomis)(op2, op2);
code.jnp(end, code.T_NEAR);
if (ctx.FPSCR_DN()) {
code.jmp(snan);
} else {
move_to_tmp(op2);
code.bt(tmp.cvt64(), mantissa_msb_bit);
code.jnc(snan);
code.movaps(op2, op1);
code.jmp(end);
}
// op2 is NaN
code.L(op2_is_nan);
move_to_tmp(op2);
code.bt(tmp, mantissa_msb_bit);
code.jnc(snan);
code.movaps(op2, op1);
code.jmp(end);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, op2);
}
void EmitX64::EmitFPMax32(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMax<32, true>(code, ctx, inst);
}
void EmitX64::EmitFPMax64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMax<64, true>(code, ctx, inst);
}
void EmitX64::EmitFPMaxNumeric32(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMaxNumeric<32, true>(code, ctx, inst);
}
void EmitX64::EmitFPMaxNumeric64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMaxNumeric<64, true>(code, ctx, inst);
}
void EmitX64::EmitFPMin32(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMax<32, false>(code, ctx, inst);
}
void EmitX64::EmitFPMin64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMax<64, false>(code, ctx, inst);
}
void EmitX64::EmitFPMinNumeric32(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMaxNumeric<32, false>(code, ctx, inst);
}
void EmitX64::EmitFPMinNumeric64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMinMaxNumeric<64, false>(code, ctx, inst);
}
void EmitX64::EmitFPMul32(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<32>(code, ctx, inst, &Xbyak::CodeGenerator::mulss);
}
void EmitX64::EmitFPMul64(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<64>(code, ctx, inst, &Xbyak::CodeGenerator::mulsd);
}
template<size_t fsize>
static void EmitFPMulAdd(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tFMA)) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Label end, fallback;
const Xbyak::Xmm operand1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm operand2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm operand3 = ctx.reg_alloc.UseXmm(args[2]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
code.movaps(result, operand1);
FCODE(vfmadd231s)(result, operand2, operand3);
code.movaps(tmp, code.MConst(xword, fsize == 32 ? f32_non_sign_mask : f64_non_sign_mask));
code.andps(tmp, result);
FCODE(ucomis)(tmp, code.MConst(xword, fsize == 32 ? f32_smallest_normal : f64_smallest_normal));
code.jz(fallback, code.T_NEAR);
code.L(end);
code.SwitchToFarCode();
code.L(fallback);
code.sub(rsp, 8);
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.movq(code.ABI_PARAM1, operand1);
code.movq(code.ABI_PARAM2, operand2);
code.movq(code.ABI_PARAM3, operand3);
code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR());
#ifdef _WIN32
code.sub(rsp, 16 + ABI_SHADOW_SPACE);
code.lea(rax, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(qword[rsp + ABI_SHADOW_SPACE], rax);
code.CallFunction(&FP::FPMulAdd<FPT>);
code.add(rsp, 16 + ABI_SHADOW_SPACE);
#else
code.lea(code.ABI_PARAM5, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPMulAdd<FPT>);
#endif
code.movq(result, code.ABI_RETURN);
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocXmmIdx(result.getIdx()));
code.add(rsp, 8);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0], args[1], args[2]);
code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR());
#ifdef _WIN32
code.sub(rsp, 16 + ABI_SHADOW_SPACE);
code.lea(rax, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(qword[rsp + ABI_SHADOW_SPACE], rax);
code.CallFunction(&FP::FPMulAdd<FPT>);
code.add(rsp, 16 + ABI_SHADOW_SPACE);
#else
code.lea(code.ABI_PARAM5, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPMulAdd<FPT>);
#endif
}
void EmitX64::EmitFPMulAdd32(EmitContext& ctx, IR::Inst* inst) {
EmitFPMulAdd<32>(code, ctx, inst);
}
void EmitX64::EmitFPMulAdd64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMulAdd<64>(code, ctx, inst);
}
template<size_t fsize>
static void EmitFPMulX(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
using FPT = mp::unsigned_integer_of_size<fsize>;
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool do_default_nan = ctx.FPSCR_DN() || !ctx.AccurateNaN();
const Xbyak::Xmm op1 = ctx.reg_alloc.UseXmm(args[0]);
const Xbyak::Xmm op2 = ctx.reg_alloc.UseXmm(args[1]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 tmp = do_default_nan ? INVALID_REG : ctx.reg_alloc.ScratchGpr();
Xbyak::Label end, nan, op_are_nans;
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
FCODE(vmuls)(result, op1, op2);
} else {
code.movaps(result, op1);
FCODE(muls)(result, op2);
}
FCODE(ucomis)(result, result);
code.jp(nan, code.T_NEAR);
code.L(end);
code.SwitchToFarCode();
code.L(nan);
FCODE(ucomis)(op1, op2);
code.jp(op_are_nans);
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) {
code.vxorps(result, op1, op2);
} else {
code.movaps(result, op1);
code.xorps(result, op2);
}
code.andps(result, code.MConst(xword, FP::FPInfo<FPT>::sign_mask));
code.orps(result, code.MConst(xword, FP::FPValue<FPT, false, 0, 2>()));
code.jmp(end, code.T_NEAR);
code.L(op_are_nans);
if (do_default_nan) {
code.movaps(result, code.MConst(xword, FP::FPInfo<FPT>::DefaultNaN()));
code.jmp(end, code.T_NEAR);
} else {
EmitPostProcessNaNs<fsize>(code, result, op1, op2, tmp, end);
}
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPMulX32(EmitContext& ctx, IR::Inst* inst) {
EmitFPMulX<32>(code, ctx, inst);
}
void EmitX64::EmitFPMulX64(EmitContext& ctx, IR::Inst* inst) {
EmitFPMulX<64>(code, ctx, inst);
}
template<typename FPT>
static void EmitFPRecipEstimate(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0]);
code.mov(code.ABI_PARAM2.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM3, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPRecipEstimate<FPT>);
}
void EmitX64::EmitFPRecipEstimate32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRecipEstimate<u32>(code, ctx, inst);
}
void EmitX64::EmitFPRecipEstimate64(EmitContext& ctx, IR::Inst* inst) {
EmitFPRecipEstimate<u64>(code, ctx, inst);
}
template<typename FPT>
static void EmitFPRecipStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0], args[1]);
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPRecipStepFused<FPT>);
}
void EmitX64::EmitFPRecipStepFused32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRecipStepFused<u32>(code, ctx, inst);
}
void EmitX64::EmitFPRecipStepFused64(EmitContext& ctx, IR::Inst* inst) {
EmitFPRecipStepFused<u64>(code, ctx, inst);
}
static void EmitFPRound(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, size_t fsize) {
const auto rounding = static_cast<FP::RoundingMode>(inst->GetArg(1).GetU8());
const bool exact = inst->GetArg(2).GetU1();
if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE41) && rounding != FP::RoundingMode::ToNearest_TieAwayFromZero && !exact) {
const int round_imm = [&]{
switch (rounding) {
case FP::RoundingMode::ToNearest_TieEven:
return 0b00;
case FP::RoundingMode::TowardsPlusInfinity:
return 0b10;
case FP::RoundingMode::TowardsMinusInfinity:
return 0b01;
case FP::RoundingMode::TowardsZero:
return 0b11;
default:
UNREACHABLE();
}
return 0;
}();
if (fsize == 64) {
FPTwoOp<64>(code, ctx, inst, [&](Xbyak::Xmm result) {
code.roundsd(result, result, round_imm);
});
} else {
FPTwoOp<32>(code, ctx, inst, [&](Xbyak::Xmm result) {
code.roundss(result, result, round_imm);
});
}
return;
}
using fsize_list = mp::list<mp::vlift<size_t(32)>, mp::vlift<size_t(64)>>;
using rounding_list = mp::list<
std::integral_constant<FP::RoundingMode, FP::RoundingMode::ToNearest_TieEven>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::TowardsPlusInfinity>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::TowardsMinusInfinity>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::TowardsZero>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::ToNearest_TieAwayFromZero>
>;
using exact_list = mp::list<mp::vlift<true>, mp::vlift<false>>;
using key_type = std::tuple<size_t, FP::RoundingMode, bool>;
using value_type = u64(*)(u64, FP::FPSR&, FP::FPCR);
static const auto lut = mp::GenerateLookupTableFromList<key_type, value_type>(
[](auto args) {
return std::pair<key_type, value_type>{
mp::to_tuple<decltype(args)>,
static_cast<value_type>(
[](u64 input, FP::FPSR& fpsr, FP::FPCR fpcr) {
constexpr auto t = mp::to_tuple<decltype(args)>;
constexpr size_t fsize = std::get<0>(t);
constexpr FP::RoundingMode rounding_mode = std::get<1>(t);
constexpr bool exact = std::get<2>(t);
using InputSize = mp::unsigned_integer_of_size<fsize>;
return FP::FPRoundInt<InputSize>(static_cast<InputSize>(input), fpcr, rounding_mode, exact, fpsr);
}
)
};
},
mp::cartesian_product<fsize_list, rounding_list, exact_list>{}
);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0]);
code.lea(code.ABI_PARAM2, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
code.CallFunction(lut.at(std::make_tuple(fsize, rounding, exact)));
}
void EmitX64::EmitFPRoundInt32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRound(code, ctx, inst, 32);
}
void EmitX64::EmitFPRoundInt64(EmitContext& ctx, IR::Inst* inst) {
EmitFPRound(code, ctx, inst, 64);
}
template<typename FPT>
static void EmitFPRSqrtEstimate(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0]);
code.mov(code.ABI_PARAM2.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM3, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPRSqrtEstimate<FPT>);
}
void EmitX64::EmitFPRSqrtEstimate32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRSqrtEstimate<u32>(code, ctx, inst);
}
void EmitX64::EmitFPRSqrtEstimate64(EmitContext& ctx, IR::Inst* inst) {
EmitFPRSqrtEstimate<u64>(code, ctx, inst);
}
template<typename FPT>
static void EmitFPRSqrtStepFused(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, args[0], args[1]);
code.mov(code.ABI_PARAM3.cvt32(), ctx.FPCR());
code.lea(code.ABI_PARAM4, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.CallFunction(&FP::FPRSqrtStepFused<FPT>);
}
void EmitX64::EmitFPRSqrtStepFused32(EmitContext& ctx, IR::Inst* inst) {
EmitFPRSqrtStepFused<u32>(code, ctx, inst);
}
void EmitX64::EmitFPRSqrtStepFused64(EmitContext& ctx, IR::Inst* inst) {
EmitFPRSqrtStepFused<u64>(code, ctx, inst);
}
void EmitX64::EmitFPSqrt32(EmitContext& ctx, IR::Inst* inst) {
FPTwoOp<32>(code, ctx, inst, &Xbyak::CodeGenerator::sqrtss);
}
void EmitX64::EmitFPSqrt64(EmitContext& ctx, IR::Inst* inst) {
FPTwoOp<64>(code, ctx, inst, &Xbyak::CodeGenerator::sqrtsd);
}
void EmitX64::EmitFPSub32(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<32>(code, ctx, inst, &Xbyak::CodeGenerator::subss);
}
void EmitX64::EmitFPSub64(EmitContext& ctx, IR::Inst* inst) {
FPThreeOp<64>(code, ctx, inst, &Xbyak::CodeGenerator::subsd);
}
static Xbyak::Reg64 SetFpscrNzcvFromFlags(BlockOfCode& code, EmitContext& ctx) {
ctx.reg_alloc.ScratchGpr({HostLoc::RCX}); // shifting requires use of cl
Xbyak::Reg64 nzcv = ctx.reg_alloc.ScratchGpr();
// x64 flags ARM flags
// ZF PF CF NZCV
// Unordered 1 1 1 0011
// Greater than 0 0 0 0010
// Less than 0 0 1 1000
// Equal 1 0 0 0110
//
// Thus we can take use ZF:CF as an index into an array like so:
// x64 ARM ARM as x64
// ZF:CF NZCV NZ-----C-------V
// 0 0010 0000000100000000 = 0x0100
// 1 1000 1000000000000000 = 0x8000
// 2 0110 0100000100000000 = 0x4100
// 3 0011 0000000100000001 = 0x0101
code.mov(nzcv, 0x0101'4100'8000'0100);
code.sete(cl);
code.rcl(cl, 5); // cl = ZF:CF:0000
code.shr(nzcv, cl);
return nzcv;
}
void EmitX64::EmitFPCompare32(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm reg_a = ctx.reg_alloc.UseXmm(args[0]);
Xbyak::Xmm reg_b = ctx.reg_alloc.UseXmm(args[1]);
bool exc_on_qnan = args[2].GetImmediateU1();
if (exc_on_qnan) {
code.comiss(reg_a, reg_b);
} else {
code.ucomiss(reg_a, reg_b);
}
Xbyak::Reg64 nzcv = SetFpscrNzcvFromFlags(code, ctx);
ctx.reg_alloc.DefineValue(inst, nzcv);
}
void EmitX64::EmitFPCompare64(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Xmm reg_a = ctx.reg_alloc.UseXmm(args[0]);
Xbyak::Xmm reg_b = ctx.reg_alloc.UseXmm(args[1]);
bool exc_on_qnan = args[2].GetImmediateU1();
if (exc_on_qnan) {
code.comisd(reg_a, reg_b);
} else {
code.ucomisd(reg_a, reg_b);
}
Xbyak::Reg64 nzcv = SetFpscrNzcvFromFlags(code, ctx);
ctx.reg_alloc.DefineValue(inst, nzcv);
}
void EmitX64::EmitFPSingleToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
code.cvtss2sd(result, result);
if (ctx.FPSCR_DN()) {
ForceToDefaultNaN<64>(code, result);
}
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPDoubleToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.UseScratchXmm(args[0]);
code.cvtsd2ss(result, result);
if (ctx.FPSCR_DN()) {
ForceToDefaultNaN<32>(code, result);
}
ctx.reg_alloc.DefineValue(inst, result);
}
static void EmitFPToFixed(BlockOfCode& code, EmitContext& ctx, IR::Inst* inst, size_t fsize, bool unsigned_, size_t isize) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const size_t fbits = args[1].GetImmediateU8();
const auto rounding = static_cast<FP::RoundingMode>(args[2].GetImmediateU8());
if (code.DoesCpuSupport(Xbyak::util::Cpu::tSSE41) && rounding != FP::RoundingMode::ToNearest_TieAwayFromZero){
const Xbyak::Xmm src = ctx.reg_alloc.UseScratchXmm(args[0]);
const int round_imm = [&]{
switch (rounding) {
case FP::RoundingMode::ToNearest_TieEven:
default:
return 0b00;
case FP::RoundingMode::TowardsPlusInfinity:
return 0b10;
case FP::RoundingMode::TowardsMinusInfinity:
return 0b01;
case FP::RoundingMode::TowardsZero:
return 0b11;
}
}();
const Xbyak::Xmm scratch = ctx.reg_alloc.ScratchXmm();
const Xbyak::Reg64 result = ctx.reg_alloc.ScratchGpr().cvt64();
if (fsize == 64) {
if (fbits != 0) {
const u64 scale_factor = static_cast<u64>((fbits + 1023) << 52);
code.mulsd(src, code.MConst(xword, scale_factor));
}
code.roundsd(src, src, round_imm);
} else {
if (fbits != 0) {
const u32 scale_factor = static_cast<u32>((fbits + 127) << 23);
code.mulss(src, code.MConst(xword, scale_factor));
}
code.roundss(src, src, round_imm);
code.cvtss2sd(src, src);
}
ZeroIfNaN<64>(code, src, scratch);
if (isize == 64) {
Xbyak::Label saturate_max, end;
if (unsigned_) {
code.maxsd(src, code.MConst(xword, f64_min_u64));
}
code.movsd(scratch, code.MConst(xword, unsigned_ ? f64_max_u64_lim : f64_max_s64_lim));
code.comisd(scratch, src);
code.jna(saturate_max, code.T_NEAR);
if (unsigned_) {
Xbyak::Label below_max;
code.movsd(scratch, code.MConst(xword, f64_max_s64_lim));
code.comisd(src, scratch);
code.jb(below_max);
code.subsd(src, scratch);
code.cvttsd2si(result, src);
code.btc(result, 63);
code.jmp(end);
code.L(below_max);
}
code.cvttsd2si(result, src); // 64 bit gpr
code.L(end);
code.SwitchToFarCode();
code.L(saturate_max);
code.mov(result, unsigned_ ? 0xFFFF'FFFF'FFFF'FFFF : 0x7FFF'FFFF'FFFF'FFFF);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
} else {
code.minsd(src, code.MConst(xword, unsigned_ ? f64_max_u32 : f64_max_s32));
if (unsigned_) {
code.maxsd(src, code.MConst(xword, f64_min_u32));
code.cvttsd2si(result, src); // 64 bit gpr
} else {
code.cvttsd2si(result.cvt32(), src);
}
}
ctx.reg_alloc.DefineValue(inst, result);
return;
}
using fsize_list = mp::list<mp::vlift<size_t(32)>, mp::vlift<size_t(64)>>;
using unsigned_list = mp::list<mp::vlift<true>, mp::vlift<false>>;
using isize_list = mp::list<mp::vlift<size_t(32)>, mp::vlift<size_t(64)>>;
using rounding_list = mp::list<
std::integral_constant<FP::RoundingMode, FP::RoundingMode::ToNearest_TieEven>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::TowardsPlusInfinity>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::TowardsMinusInfinity>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::TowardsZero>,
std::integral_constant<FP::RoundingMode, FP::RoundingMode::ToNearest_TieAwayFromZero>
>;
using key_type = std::tuple<size_t, bool, size_t, FP::RoundingMode>;
using value_type = u64(*)(u64, u8, FP::FPSR&, FP::FPCR);
static const auto lut = mp::GenerateLookupTableFromList<key_type, value_type>(
[](auto args) {
return std::pair<key_type, value_type>{
mp::to_tuple<decltype(args)>,
static_cast<value_type>(
[](u64 input, u8 fbits, FP::FPSR& fpsr, FP::FPCR fpcr) {
constexpr auto t = mp::to_tuple<decltype(args)>;
constexpr size_t fsize = std::get<0>(t);
constexpr bool unsigned_ = std::get<1>(t);
constexpr size_t isize = std::get<2>(t);
constexpr FP::RoundingMode rounding_mode = std::get<3>(t);
using InputSize = mp::unsigned_integer_of_size<fsize>;
return FP::FPToFixed<InputSize>(isize, static_cast<InputSize>(input), fbits, unsigned_, fpcr, rounding_mode, fpsr);
}
)
};
},
mp::cartesian_product<fsize_list, unsigned_list, isize_list, rounding_list>{}
);
ctx.reg_alloc.HostCall(inst, args[0], args[1]);
code.lea(code.ABI_PARAM3, code.ptr[code.r15 + code.GetJitStateInfo().offsetof_fpsr_exc]);
code.mov(code.ABI_PARAM4.cvt32(), ctx.FPCR());
code.CallFunction(lut.at(std::make_tuple(fsize, unsigned_, isize, rounding)));
}
void EmitX64::EmitFPDoubleToFixedS32(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 64, false, 32);
}
void EmitX64::EmitFPDoubleToFixedS64(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 64, false, 64);
}
void EmitX64::EmitFPDoubleToFixedU32(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 64, true, 32);
}
void EmitX64::EmitFPDoubleToFixedU64(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 64, true, 64);
}
void EmitX64::EmitFPSingleToFixedS32(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 32, false, 32);
}
void EmitX64::EmitFPSingleToFixedS64(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 32, false, 64);
}
void EmitX64::EmitFPSingleToFixedU32(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 32, true, 32);
}
void EmitX64::EmitFPSingleToFixedU64(EmitContext& ctx, IR::Inst* inst) {
EmitFPToFixed(code, ctx, inst, 32, true, 64);
}
void EmitX64::EmitFPS32ToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 from = ctx.reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm();
bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
code.cvtsi2ss(to, from);
ctx.reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPU32ToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm();
const bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) {
const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]);
code.vcvtusi2ss(to, to, from.cvt32());
} else {
// We are using a 64-bit GPR register to ensure we don't end up treating the input as signed
const Xbyak::Reg64 from = ctx.reg_alloc.UseScratchGpr(args[0]);
code.mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary
code.cvtsi2ss(to, from);
}
ctx.reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPS32ToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
Xbyak::Reg32 from = ctx.reg_alloc.UseGpr(args[0]).cvt32();
Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm();
bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
code.cvtsi2sd(to, from);
ctx.reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPS64ToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
code.cvtsi2sd(result, from);
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPS64ToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
code.cvtsi2ss(result, from);
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPU32ToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm to = ctx.reg_alloc.ScratchXmm();
const bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) {
const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]);
code.vcvtusi2sd(to, to, from.cvt32());
} else {
// We are using a 64-bit GPR register to ensure we don't end up treating the input as signed
const Xbyak::Reg64 from = ctx.reg_alloc.UseScratchGpr(args[0]);
code.mov(from.cvt32(), from.cvt32()); // TODO: Verify if this is necessary
code.cvtsi2sd(to, from);
}
ctx.reg_alloc.DefineValue(inst, to);
}
void EmitX64::EmitFPU64ToDouble(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) {
code.vcvtusi2sd(result, result, from);
} else {
const Xbyak::Xmm tmp = ctx.reg_alloc.ScratchXmm();
code.movq(tmp, from);
code.punpckldq(tmp, code.MConst(xword, 0x4530000043300000, 0));
code.subpd(tmp, code.MConst(xword, 0x4330000000000000, 0x4530000000000000));
code.pshufd(result, tmp, 0b01001110);
code.addpd(result, tmp);
if (ctx.FPSCR_RMode() == FP::RoundingMode::TowardsMinusInfinity) {
code.pand(result, code.MConst(xword, f64_non_sign_mask));
}
}
ctx.reg_alloc.DefineValue(inst, result);
}
void EmitX64::EmitFPU64ToSingle(EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
const bool round_to_nearest = args[1].GetImmediateU1();
ASSERT_MSG(!round_to_nearest, "round_to_nearest unimplemented");
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX512F)) {
const Xbyak::Reg64 from = ctx.reg_alloc.UseGpr(args[0]);
code.vcvtusi2ss(result, result, from);
} else {
const Xbyak::Reg64 from = ctx.reg_alloc.UseScratchGpr(args[0]);
code.pxor(result, result);
Xbyak::Label negative;
Xbyak::Label end;
code.test(from, from);
code.js(negative);
code.cvtsi2ss(result, from);
code.jmp(end);
code.L(negative);
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
code.mov(tmp, from);
code.shr(tmp, 1);
code.and_(from.cvt32(), 1);
code.or_(from, tmp);
code.cvtsi2ss(result, from);
code.addss(result, result);
code.L(end);
}
ctx.reg_alloc.DefineValue(inst, result);
}
} // namespace Dynarmic::BackendX64