d4c6fa3122
cd4af11ef Update version 1ebc2f7cc Bump version f4c997062 Fix changelog 72920ba30 Update changelog 0907c08ae Fix handling of default alignmment with locale (#1801) 37c8f4eaf Don't use 128 bit integers with clang-cl (#1800) eaaaec999 Workaround a bug in msvc ccf8561cb Workaround broken numeric_limites, part 2 (#1787) 0cc73ebf7 Report error on missing named argument (#1796) 33efc3c94 Fix handling of iterators in locale-specific formatting (#1782) b9d749095 Update version 86b63bb71 Bump version cbf6be960 Update changelog 229ee9b46 Workaround broken numeric_limits (#1725) 2b7a146fa Fix a regression in handling digit separators (#1782) 89d0c7124 Fix compatibility with CMake 3.4 (#1779) f19b1a521 Update version 5c67fefb2 Fix a changelog entry 1d2a556e1 Fix undefined reference error 04c9b62fb Merge release branch 6be6762e5 Fix date f1dd2eb3c Bump version fbf3b943c Workaround a bug in gcc a29a01d30 Fix docs 9f0b3afb7 Bump version in namespace 86b2f99f8 Fix the docs c472ff12d Update version 5173a76ba Update version 1614af352 Minor corrections in the changelog 569a9b3a7 Bump version 4e7e3c65a Update docs 0f7a6bfa1 Add a section on std::format compatibility 4faec5a5e Update README.rst 7dbc8ac71 Update changelog c87dd746f Update changelog 372175caf Revert changelog changes 904754876 Add ClickHouse to the list of projects (#1751) d30bca64e Revert changelog conversion since GFM is not supported there d6047cdc4 Update changelog 810241b36 Convert changlog to markdown 661c47473 Rename changelog 7c33059fa Update ChangeLog.rst 9e20883ab Update README.rst 41899d522 Update changelog f42f45908 Update changelog 2381df654 Update readme 7ae816563 Update README.rst c56cf3d07 Update changelog and readme 01309a34a Deprecate arg_formatter a62d06055 Update changelog 23e3a2eee Update changelog d8e0554b9 Disable numeric formatting by default 1e8eea4f4 Update changelog 44bd5384a Fix formatting 20e19387a Update changelog 56fed7814 FMT_NUMERIC_ALIGN -> FMT_DEPRECATED_NUMERIC_ALIGN 56e63078f Make the n specifier an opt-in 31ce6bc70 Fix a conversion warning with Clang10 on Windows (#1750) c9c5b90da Fix a typo. Thanks Tracy Chapman from TripleChecker 1f3f84631 Fix a typo 5de62af60 Fix possible infinite recursion in FMT_ASSERT (#1744) cbddab2fe Use consistent include style f69b6eaab Add a simple buffered stream with no sync ba363b3a2 Use digit pairs as in unrolledlut a6f8e7d86 Update changelog e753244ab Update changelog 98a7a8b40 Update changelog and disable internal 3135d95fd Don't use non-portable attribute 8630a8f5f Tweak the docs cc3a88e6b Extract docs from compile.h 79c4b6bd7 Apply clang-format d130ee070 Document format string compilation d0f90b5be Spelling fixes 6e080660d Update README.rst 31c3a2426 Spelling fixes 613b3b459 Spelling fixes 978521bb8 Fix a compile error introduced in #1738 4e94c649f Deprecate compile 1a83443e6 Add user-defined type support to compilation 8bef1c3b3 Tweaks for EDG based compilers (Intel, nVidia, MCST/Elbrus, etc). b287c37c6 Do not use -Wl,--as-needed with emscripten. 2cac8a9d2 Reintroduce UDT support to fmt::to_string and test ADL 9a4cc8842 Add FMT_COMPILE support to format_to 5ddf9ee1b Streamline default FP formatting 0b3a83f7f Update README.rst 5aa5c9873 Added #define WIN32_LEAN_AND_MEAN before including windows.h (#1729) 397ad1bec Optimize common case 7431165f3 Make to_string bypass format ee4d4c7fd Inline compiled format ab2f8484e Finish text::format e900d735b Re-enable assert in format_decimal f4de7b684 Fix ambiguity 1f8f5450b Reuse format_decimal d702a68df Fix formatting of bool with FMT_COMPILE and add more tests e956a14e9 Use write instead of format_int in to_string 98dcc251e Undo branching reduction 5b8641ddd Undo branching reduction 8c88abde6 Fix sign handling in 'L' 23b976a61 Reduce branching 9edee0e72 Optimize small string parsing a909d42b7 Fix a warning 16637341b Enable compilation for all types 2d71d7e03 Add a simple format string compilation API d259fcfb0 Tweak comments 704ed557a Move project in order to solve a CMake warning 8603bd20d Update README.rst 547f12ae6 Fix a warning (#1722) f904e8a1b c++11 use formatting user-defined types (#1721) 100e8af08 Update README.rst c11d0f056 Update README.rst 2453ee576 Improve default formatting 47ae52155 MINGW cross compiler fixes 936a1833c Add default_arg_formatter f2c9cb624 Fix a UB d3107f855 Cleanup arg_formatter_base 5e7c70e20 Simplify arg_formatter_base 38cc68b3e Inline visitor 6732ea500 Make symbols readable 57ddc77ce Make advance_to a noop for back_insert_iterator 50bad7d62 Optimize format string parsing 8f7a824e4 Inline visit f11e96870 Optimize format string parsing 09737dd83 Optimize format handler d9e3d6e6e Move format_handler to detail 795b47a7b Fix a warning (#1712) 95c6ac0cc fix typo which caused the loss of the counting information when using a printf context with a truncating_iterator 21409cfdd Fix warnings 88c8d534e Move digits10 to where they belong and add comments 0f3eaeac0 Fix a warning 344218510 Ignore /doc/node_modules directory 16aec0617 Cleanup arg_formatter_base 1e1193590 Fix format_decimal overloads 0893c9c2e Inline parse_format_string 3245145a4 Remove undocumented buffer_range and output_range 57fc44907 Increase VM disk size 7d22bebb6 Remove uses of buffer_range 8f2b5fe74 Don't install sphinx cache files f095c67b6 Remove uses of buffer_range 5aabf1f71 Simplify copy_str 19c5b5d15 Simplify arg_formatter 519571ede Simplify arg_formatter_base ac8dfd841 Improve handling of separators 2c6165a22 Reduce the number of comparisons 28639969e Use memcpy for copying digits f5fa1dee5 Support custom FMT_INC_DIR in pkgconfig and cmake configs (#1702) 51bf9cfac Fix Mingw support 1a716caf5 Optimize common case 98d4bbf81 Update README.rst 8c8f74a87 fix zero flag for char types and make zero flag ignored if a precision is specified bc1b89da2 Temporarily revert parsing changes a7fb321ac Remove a redundant branch 8cadb9650 fix max/min macro (#1697) 297c3b2ed Fix an example (thanks Alexey Kuzmenko) 943532fec Make ostream formatter work with compile-time format strings (#1692) bd8804019 Update README.rst f230300ac Knuth is using fmt library (#1691) a265e25b7 Optimize small string parsing 2aa2526f6 Optimize small string concatenation 8d78045e7 Move void_t to where it's used 7aafa6bc6 Update analytics c66aae165 Adding sentinel support to fmt::join(). (#1689) 6d66de380 Add c specifier support to integral types (#1652) 6b219a58d fix interaction of space flag and '+' flag, as well as '-' flag and '0' flag (#1687) eee2023c2 Update signatures c5ed73aab Add fmt::detail::buffer to the docs (#704) ea1cd9638 Fix apidoc d3964d7b1 Merge branch 'master' of github.com:fmtlib/fmt d18c6723a Update docs 96c18b26c make plus flag for printf not be ignored for char argument (#1683) ba25baeb9 Apply doc patch to 6.2.1 981b517cc nested replacement fields may omit arg_id (#1681) 922ea924b Make dynamic_format_arg_store reusable and add reserve() (#1677) e0d98923c Update version 806926537 internal -> detail (#1538) 963ee0831 Simplify named arguments 02a6fe59f Named arguments go brrr de290f5c4 Ditch internal::arg_map d0623de51 Bump version 73e335ed3 Make implicit capture explicit for C++20 (#1669) b4d46e398 Update changelog a182f7341 Update changelog 68201831a Support named args in dynamic_format_arg_store (#1655). (#1663) 7f723fbcb Consistently namespace qualify size_t c06851456 Purge basic_writer 2f05054dd Purge basic_writer f0ce21164 Revert enum change 44639b11f Fix some warnings (#1667) 1c86a99e8 Purge basic_writer 8f511fc12 Make copyfmt not throw (#1666) 59fe455f3 Remove compatibility stubs b0f47a13e Separate nonfinite formatting d6cea50d0 Remove deprecated APIs 40bc7163f Move FMT_MAYBE_UNUSED to where it's actually used 080e44d0b Fix inconsistent type detection (#1662) 7e57cace5 Exclude std::abort from compilation when compiling CUDA with Clang (#1661) 7b66e2f21 Inherit arg_formatter_base from basic_writer bab3f5800 Refactor pointer formatting 9cc7edfdd Move int_writer to the namespace scope 8d9d528bf Improve handling of alignment 8efd1a8ef Improve handling of alignment a71bc9c82 Use '0' fill with numeric align for consistency with std::format 60d85d598 Suppress ubsan warning c3099beb6 Cleanup cbb4cb899 Remove undocumented deprecated APIs b85e9ac38 Simplify vformat_to e3710ab97 FMT_CONSTEXPR -> constexpr d59751f0f Update date formatting example to use threadsafe localtime d6abb2fa0 Reduce library size e9fdea90b Update README.rst 44b6584f2 Update README.rst 78f041ab5 build: Fix installation paths 7ca89bf87 Reduce template bloat in write_int 3c114d091 Fix a shadowing warning (#1658) e2ef12a8c Allow to avoid inclusion of os.cc in fmt target bca82719a Pass iterator by value 99da38962 Make write_padded non-members f19d66794 Bump fuzzer allocation limit 3e6984761 Reduce branching in write_padded 9ac1eebd4 Reduce library size e2ff91067 Replace FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION with fmt-specific macro (#1650) f2ed03b91 Fix a warning (#1649) 9dde9f013 Reduce library size b1af642d1 Reduce library size 4a617f25c Clarify encoding conversion in chrono 6f435f55c Improve compile time by using extern template (#1452) cb475cb88 Clarify why we don't check argument id 1e1ac6e96 Check dynamic width/precision id at compile time (#1614) e51c449fe Revert "Check dynamic widht/precision id at compile time (#1614)" 0463665ef Don't access a C string past precision in printf (#1595) 7d748a6f8 Check dynamic widht/precision id at compile time (#1614) 2b75bd7ce Get rid of do_check_format_string 4a1d5931c Simplify udl_formatter with FMT_STRING 811b0f905 Enable compile-time error tests 450e8eed9 Fix markup b8fbcec1b Clarify formatter reuse 56bc86ffa Suppress bogus MSVC analysis warnings 3f79357ef Fix a recent regression in handling max packed arguments 8a11148f9 Add Facebook Folly to the list of projects e371e8b68 Tweak readme 813732fed Improve readme formatting 3670d5b3f README: add vectorized.io/redpanda in the list of users 9e2ad7cf6 Add windows terminal to the projects using {fmt} 63479c851 Use a delegating ctor and add inlines 5944fcad3 Remove remaining wchar_t instantiation e253b371b Don't generate RTTI for allocator 0c86f467b Fix build on ancient gcc 1929df4bc Simplify format_args a13822181 Always inline arg_data functions 04e0dfd4b Always inline value ctors 04cde756b Simplify checks c9a57b9a8 Fix incorrect assumptions about nul termination f46f5ecaf Reenable constexpr _compile on GCC 9 6e8d7e277 Don't use constexpr on Intel compiler (#1628) 567ed03f8 Merge arg overloads and cleanup c3fa33314 Remove warning in core.h with when compiling with gcc and -Wshadow 84898b462 Remove warning in format.h when compiling with gcc and -Wshadow 538d83fd0 Cleanup named arguments 8a4630686 Improve handling of named arguments a9d62d3f3 Add check for CompiledFormat to avoid ambiguous call fdcf7870a Add stack-based named argument storage 5899267c4 Fix a clang-tidy warning 07b4c246e Fix a typo e99809f29 Fix ostream support in sprintf (#1631) 3cd5179f3 Fixed clang tidy warning -multiple declarations in a single statement reduces readability 7404e33a7 Fix clang warning about explicit ctor 3aab2171e Clean up basic_format_args 7645ca072 Clean up printf e30d8391e Suppress an MSVC warning (#1622) 8cd8ef03e Simplify warning suppression bbb6b357c Add floating-point L specifier (#1624) 36ea32640 Suppress a bogus MSVC warning 141a00d64 Define FMT_EXTERN_TEMPLATE_API on export 3860edc5d Bump version 7d01859ef Fix handling of unsigned char strings in printf 63b23e786 Merge branch 'master' of github.com:fmtlib/fmt 4999796c1 Fix the docs 34b3f7b7a Avoid windows issue with min() max() macros 27e3c0fe9 Update signature in the docs git-subtree-dir: externals/fmt git-subtree-split: cd4af11efc9c622896a3e4cb599fa28668ca3d05
1453 lines
52 KiB
C++
1453 lines
52 KiB
C++
// Formatting library for C++ - implementation
|
|
//
|
|
// Copyright (c) 2012 - 2016, Victor Zverovich
|
|
// All rights reserved.
|
|
//
|
|
// For the license information refer to format.h.
|
|
|
|
#ifndef FMT_FORMAT_INL_H_
|
|
#define FMT_FORMAT_INL_H_
|
|
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstdarg>
|
|
#include <cstring> // for std::memmove
|
|
#include <cwchar>
|
|
#include <exception>
|
|
|
|
#include "format.h"
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
# include <locale>
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
# if !defined(NOMINMAX) && !defined(WIN32_LEAN_AND_MEAN)
|
|
# define NOMINMAX
|
|
# define WIN32_LEAN_AND_MEAN
|
|
# include <windows.h>
|
|
# undef WIN32_LEAN_AND_MEAN
|
|
# undef NOMINMAX
|
|
# else
|
|
# include <windows.h>
|
|
# endif
|
|
# include <io.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable : 4702) // unreachable code
|
|
#endif
|
|
|
|
// Dummy implementations of strerror_r and strerror_s called if corresponding
|
|
// system functions are not available.
|
|
inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; }
|
|
inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; }
|
|
|
|
FMT_BEGIN_NAMESPACE
|
|
namespace detail {
|
|
|
|
FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
|
|
// Use unchecked std::fprintf to avoid triggering another assertion when
|
|
// writing to stderr fails
|
|
std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
|
|
// Chosen instead of std::abort to satisfy Clang in CUDA mode during device
|
|
// code pass.
|
|
std::terminate();
|
|
}
|
|
|
|
#ifndef _MSC_VER
|
|
# define FMT_SNPRINTF snprintf
|
|
#else // _MSC_VER
|
|
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
# define FMT_SNPRINTF fmt_snprintf
|
|
#endif // _MSC_VER
|
|
|
|
// A portable thread-safe version of strerror.
|
|
// Sets buffer to point to a string describing the error code.
|
|
// This can be either a pointer to a string stored in buffer,
|
|
// or a pointer to some static immutable string.
|
|
// Returns one of the following values:
|
|
// 0 - success
|
|
// ERANGE - buffer is not large enough to store the error message
|
|
// other - failure
|
|
// Buffer should be at least of size 1.
|
|
FMT_FUNC int safe_strerror(int error_code, char*& buffer,
|
|
size_t buffer_size) FMT_NOEXCEPT {
|
|
FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer");
|
|
|
|
class dispatcher {
|
|
private:
|
|
int error_code_;
|
|
char*& buffer_;
|
|
size_t buffer_size_;
|
|
|
|
// A noop assignment operator to avoid bogus warnings.
|
|
void operator=(const dispatcher&) {}
|
|
|
|
// Handle the result of XSI-compliant version of strerror_r.
|
|
int handle(int result) {
|
|
// glibc versions before 2.13 return result in errno.
|
|
return result == -1 ? errno : result;
|
|
}
|
|
|
|
// Handle the result of GNU-specific version of strerror_r.
|
|
FMT_MAYBE_UNUSED
|
|
int handle(char* message) {
|
|
// If the buffer is full then the message is probably truncated.
|
|
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
|
|
return ERANGE;
|
|
buffer_ = message;
|
|
return 0;
|
|
}
|
|
|
|
// Handle the case when strerror_r is not available.
|
|
FMT_MAYBE_UNUSED
|
|
int handle(detail::null<>) {
|
|
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
|
|
}
|
|
|
|
// Fallback to strerror_s when strerror_r is not available.
|
|
FMT_MAYBE_UNUSED
|
|
int fallback(int result) {
|
|
// If the buffer is full then the message is probably truncated.
|
|
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
|
|
: result;
|
|
}
|
|
|
|
#if !FMT_MSC_VER
|
|
// Fallback to strerror if strerror_r and strerror_s are not available.
|
|
int fallback(detail::null<>) {
|
|
errno = 0;
|
|
buffer_ = strerror(error_code_);
|
|
return errno;
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
dispatcher(int err_code, char*& buf, size_t buf_size)
|
|
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
|
|
|
|
int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
|
|
};
|
|
return dispatcher(error_code, buffer, buffer_size).run();
|
|
}
|
|
|
|
FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
// Report error code making sure that the output fits into
|
|
// inline_buffer_size to avoid dynamic memory allocation and potential
|
|
// bad_alloc.
|
|
out.resize(0);
|
|
static const char SEP[] = ": ";
|
|
static const char ERROR_STR[] = "error ";
|
|
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
|
|
size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
|
|
auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
|
|
if (detail::is_negative(error_code)) {
|
|
abs_value = 0 - abs_value;
|
|
++error_code_size;
|
|
}
|
|
error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
|
|
auto it = std::back_inserter(out);
|
|
if (message.size() <= inline_buffer_size - error_code_size)
|
|
format_to(it, "{}{}", message, SEP);
|
|
format_to(it, "{}{}", ERROR_STR, error_code);
|
|
assert(out.size() <= inline_buffer_size);
|
|
}
|
|
|
|
FMT_FUNC void report_error(format_func func, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
memory_buffer full_message;
|
|
func(full_message, error_code, message);
|
|
// Don't use fwrite_fully because the latter may throw.
|
|
(void)std::fwrite(full_message.data(), full_message.size(), 1, stderr);
|
|
std::fputc('\n', stderr);
|
|
}
|
|
|
|
// A wrapper around fwrite that throws on error.
|
|
FMT_FUNC void fwrite_fully(const void* ptr, size_t size, size_t count,
|
|
FILE* stream) {
|
|
size_t written = std::fwrite(ptr, size, count, stream);
|
|
if (written < count) FMT_THROW(system_error(errno, "cannot write to file"));
|
|
}
|
|
} // namespace detail
|
|
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
namespace detail {
|
|
|
|
template <typename Locale>
|
|
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
|
|
static_assert(std::is_same<Locale, std::locale>::value, "");
|
|
}
|
|
|
|
template <typename Locale> Locale locale_ref::get() const {
|
|
static_assert(std::is_same<Locale, std::locale>::value, "");
|
|
return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
|
|
}
|
|
|
|
template <typename Char> FMT_FUNC std::string grouping_impl(locale_ref loc) {
|
|
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>()).grouping();
|
|
}
|
|
template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
|
|
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
|
|
.thousands_sep();
|
|
}
|
|
template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref loc) {
|
|
return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
|
|
.decimal_point();
|
|
}
|
|
} // namespace detail
|
|
#else
|
|
template <typename Char>
|
|
FMT_FUNC std::string detail::grouping_impl(locale_ref) {
|
|
return "\03";
|
|
}
|
|
template <typename Char> FMT_FUNC Char detail::thousands_sep_impl(locale_ref) {
|
|
return FMT_STATIC_THOUSANDS_SEPARATOR;
|
|
}
|
|
template <typename Char> FMT_FUNC Char detail::decimal_point_impl(locale_ref) {
|
|
return '.';
|
|
}
|
|
#endif
|
|
|
|
FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default;
|
|
FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default;
|
|
|
|
FMT_FUNC void system_error::init(int err_code, string_view format_str,
|
|
format_args args) {
|
|
error_code_ = err_code;
|
|
memory_buffer buffer;
|
|
format_system_error(buffer, err_code, vformat(format_str, args));
|
|
std::runtime_error& base = *this;
|
|
base = std::runtime_error(to_string(buffer));
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) {
|
|
// fallback_uintptr is always stored in little endian.
|
|
int i = static_cast<int>(sizeof(void*)) - 1;
|
|
while (i > 0 && n.value[i] == 0) --i;
|
|
auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
|
|
return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
|
|
}
|
|
|
|
template <typename T>
|
|
const typename basic_data<T>::digit_pair basic_data<T>::digits[] = {
|
|
{'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'},
|
|
{'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'},
|
|
{'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'},
|
|
{'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'},
|
|
{'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'},
|
|
{'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
|
|
{'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'},
|
|
{'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'},
|
|
{'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'},
|
|
{'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'},
|
|
{'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'},
|
|
{'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
|
|
{'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'},
|
|
{'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'},
|
|
{'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'},
|
|
{'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'},
|
|
{'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'},
|
|
{'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
|
|
{'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'},
|
|
{'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
|
|
|
|
template <typename T>
|
|
const char basic_data<T>::hex_digits[] = "0123456789abcdef";
|
|
|
|
#define FMT_POWERS_OF_10(factor) \
|
|
factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \
|
|
(factor)*1000000, (factor)*10000000, (factor)*100000000, \
|
|
(factor)*1000000000
|
|
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::powers_of_10_64[] = {
|
|
1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
|
|
10000000000000000000ULL};
|
|
|
|
template <typename T>
|
|
const uint32_t basic_data<T>::zero_or_powers_of_10_32[] = {0,
|
|
FMT_POWERS_OF_10(1)};
|
|
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::zero_or_powers_of_10_64[] = {
|
|
0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL),
|
|
10000000000000000000ULL};
|
|
|
|
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
|
|
// These are generated by support/compute-powers.py.
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::pow10_significands[] = {
|
|
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
|
|
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
|
|
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
|
|
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
|
|
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
|
|
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
|
|
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
|
|
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
|
|
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
|
|
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
|
|
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
|
|
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
|
|
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
|
|
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
|
|
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
|
|
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
|
|
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
|
|
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
|
|
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
|
|
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
|
|
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
|
|
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
|
|
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
|
|
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
|
|
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
|
|
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
|
|
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
|
|
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
|
|
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
|
|
};
|
|
|
|
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
|
|
// to significands above.
|
|
template <typename T>
|
|
const int16_t basic_data<T>::pow10_exponents[] = {
|
|
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
|
|
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
|
|
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
|
|
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
|
|
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
|
|
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
|
|
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
|
|
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
|
|
|
|
template <typename T>
|
|
const char basic_data<T>::foreground_color[] = "\x1b[38;2;";
|
|
template <typename T>
|
|
const char basic_data<T>::background_color[] = "\x1b[48;2;";
|
|
template <typename T> const char basic_data<T>::reset_color[] = "\x1b[0m";
|
|
template <typename T> const wchar_t basic_data<T>::wreset_color[] = L"\x1b[0m";
|
|
template <typename T> const char basic_data<T>::signs[] = {0, '-', '+', ' '};
|
|
template <typename T>
|
|
const char basic_data<T>::left_padding_shifts[] = {31, 31, 0, 1, 0};
|
|
template <typename T>
|
|
const char basic_data<T>::right_padding_shifts[] = {0, 31, 0, 1, 0};
|
|
|
|
template <typename T> struct bits {
|
|
static FMT_CONSTEXPR_DECL const int value =
|
|
static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
|
|
};
|
|
|
|
class fp;
|
|
template <int SHIFT = 0> fp normalize(fp value);
|
|
|
|
// Lower (upper) boundary is a value half way between a floating-point value
|
|
// and its predecessor (successor). Boundaries have the same exponent as the
|
|
// value so only significands are stored.
|
|
struct boundaries {
|
|
uint64_t lower;
|
|
uint64_t upper;
|
|
};
|
|
|
|
// A handmade floating-point number f * pow(2, e).
|
|
class fp {
|
|
private:
|
|
using significand_type = uint64_t;
|
|
|
|
public:
|
|
significand_type f;
|
|
int e;
|
|
|
|
// All sizes are in bits.
|
|
// Subtract 1 to account for an implicit most significant bit in the
|
|
// normalized form.
|
|
static FMT_CONSTEXPR_DECL const int double_significand_size =
|
|
std::numeric_limits<double>::digits - 1;
|
|
static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
|
|
1ULL << double_significand_size;
|
|
static FMT_CONSTEXPR_DECL const int significand_size =
|
|
bits<significand_type>::value;
|
|
|
|
fp() : f(0), e(0) {}
|
|
fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
|
|
|
|
// Constructs fp from an IEEE754 double. It is a template to prevent compile
|
|
// errors on platforms where double is not IEEE754.
|
|
template <typename Double> explicit fp(Double d) { assign(d); }
|
|
|
|
// Assigns d to this and return true iff predecessor is closer than successor.
|
|
template <typename Double, FMT_ENABLE_IF(sizeof(Double) == sizeof(uint64_t))>
|
|
bool assign(Double d) {
|
|
// Assume double is in the format [sign][exponent][significand].
|
|
using limits = std::numeric_limits<Double>;
|
|
const int exponent_size =
|
|
bits<Double>::value - double_significand_size - 1; // -1 for sign
|
|
const uint64_t significand_mask = implicit_bit - 1;
|
|
const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask;
|
|
const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
|
|
auto u = bit_cast<uint64_t>(d);
|
|
f = u & significand_mask;
|
|
int biased_e =
|
|
static_cast<int>((u & exponent_mask) >> double_significand_size);
|
|
// Predecessor is closer if d is a normalized power of 2 (f == 0) other than
|
|
// the smallest normalized number (biased_e > 1).
|
|
bool is_predecessor_closer = f == 0 && biased_e > 1;
|
|
if (biased_e != 0)
|
|
f += implicit_bit;
|
|
else
|
|
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
|
|
e = biased_e - exponent_bias - double_significand_size;
|
|
return is_predecessor_closer;
|
|
}
|
|
|
|
template <typename Double, FMT_ENABLE_IF(sizeof(Double) != sizeof(uint64_t))>
|
|
bool assign(Double) {
|
|
*this = fp();
|
|
return false;
|
|
}
|
|
|
|
// Assigns d to this together with computing lower and upper boundaries,
|
|
// where a boundary is a value half way between the number and its predecessor
|
|
// (lower) or successor (upper). The upper boundary is normalized and lower
|
|
// has the same exponent but may be not normalized.
|
|
template <typename Double> boundaries assign_with_boundaries(Double d) {
|
|
bool is_lower_closer = assign(d);
|
|
fp lower =
|
|
is_lower_closer ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
|
|
// 1 in normalize accounts for the exponent shift above.
|
|
fp upper = normalize<1>(fp((f << 1) + 1, e - 1));
|
|
lower.f <<= lower.e - upper.e;
|
|
return boundaries{lower.f, upper.f};
|
|
}
|
|
|
|
template <typename Double> boundaries assign_float_with_boundaries(Double d) {
|
|
assign(d);
|
|
constexpr int min_normal_e = std::numeric_limits<float>::min_exponent -
|
|
std::numeric_limits<double>::digits;
|
|
significand_type half_ulp = 1 << (std::numeric_limits<double>::digits -
|
|
std::numeric_limits<float>::digits - 1);
|
|
if (min_normal_e > e) half_ulp <<= min_normal_e - e;
|
|
fp upper = normalize<0>(fp(f + half_ulp, e));
|
|
fp lower = fp(
|
|
f - (half_ulp >> ((f == implicit_bit && e > min_normal_e) ? 1 : 0)), e);
|
|
lower.f <<= lower.e - upper.e;
|
|
return boundaries{lower.f, upper.f};
|
|
}
|
|
};
|
|
|
|
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
|
|
template <int SHIFT> fp normalize(fp value) {
|
|
// Handle subnormals.
|
|
const auto shifted_implicit_bit = fp::implicit_bit << SHIFT;
|
|
while ((value.f & shifted_implicit_bit) == 0) {
|
|
value.f <<= 1;
|
|
--value.e;
|
|
}
|
|
// Subtract 1 to account for hidden bit.
|
|
const auto offset =
|
|
fp::significand_size - fp::double_significand_size - SHIFT - 1;
|
|
value.f <<= offset;
|
|
value.e -= offset;
|
|
return value;
|
|
}
|
|
|
|
inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; }
|
|
|
|
// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
|
|
inline uint64_t multiply(uint64_t lhs, uint64_t rhs) {
|
|
#if FMT_USE_INT128
|
|
auto product = static_cast<__uint128_t>(lhs) * rhs;
|
|
auto f = static_cast<uint64_t>(product >> 64);
|
|
return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
|
|
#else
|
|
// Multiply 32-bit parts of significands.
|
|
uint64_t mask = (1ULL << 32) - 1;
|
|
uint64_t a = lhs >> 32, b = lhs & mask;
|
|
uint64_t c = rhs >> 32, d = rhs & mask;
|
|
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
|
|
// Compute mid 64-bit of result and round.
|
|
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
|
|
return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
|
|
#endif
|
|
}
|
|
|
|
inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; }
|
|
|
|
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
|
|
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
|
|
inline fp get_cached_power(int min_exponent, int& pow10_exponent) {
|
|
const int64_t one_over_log2_10 = 0x4d104d42; // round(pow(2, 32) / log2(10))
|
|
int index = static_cast<int>(
|
|
((min_exponent + fp::significand_size - 1) * one_over_log2_10 +
|
|
((int64_t(1) << 32) - 1)) // ceil
|
|
>> 32 // arithmetic shift
|
|
);
|
|
// Decimal exponent of the first (smallest) cached power of 10.
|
|
const int first_dec_exp = -348;
|
|
// Difference between 2 consecutive decimal exponents in cached powers of 10.
|
|
const int dec_exp_step = 8;
|
|
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
|
|
pow10_exponent = first_dec_exp + index * dec_exp_step;
|
|
return {data::pow10_significands[index], data::pow10_exponents[index]};
|
|
}
|
|
|
|
// A simple accumulator to hold the sums of terms in bigint::square if uint128_t
|
|
// is not available.
|
|
struct accumulator {
|
|
uint64_t lower;
|
|
uint64_t upper;
|
|
|
|
accumulator() : lower(0), upper(0) {}
|
|
explicit operator uint32_t() const { return static_cast<uint32_t>(lower); }
|
|
|
|
void operator+=(uint64_t n) {
|
|
lower += n;
|
|
if (lower < n) ++upper;
|
|
}
|
|
void operator>>=(int shift) {
|
|
assert(shift == 32);
|
|
(void)shift;
|
|
lower = (upper << 32) | (lower >> 32);
|
|
upper >>= 32;
|
|
}
|
|
};
|
|
|
|
class bigint {
|
|
private:
|
|
// A bigint is stored as an array of bigits (big digits), with bigit at index
|
|
// 0 being the least significant one.
|
|
using bigit = uint32_t;
|
|
using double_bigit = uint64_t;
|
|
enum { bigits_capacity = 32 };
|
|
basic_memory_buffer<bigit, bigits_capacity> bigits_;
|
|
int exp_;
|
|
|
|
bigit operator[](int index) const { return bigits_[to_unsigned(index)]; }
|
|
bigit& operator[](int index) { return bigits_[to_unsigned(index)]; }
|
|
|
|
static FMT_CONSTEXPR_DECL const int bigit_bits = bits<bigit>::value;
|
|
|
|
friend struct formatter<bigint>;
|
|
|
|
void subtract_bigits(int index, bigit other, bigit& borrow) {
|
|
auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
|
|
(*this)[index] = static_cast<bigit>(result);
|
|
borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
|
|
}
|
|
|
|
void remove_leading_zeros() {
|
|
int num_bigits = static_cast<int>(bigits_.size()) - 1;
|
|
while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
|
|
bigits_.resize(to_unsigned(num_bigits + 1));
|
|
}
|
|
|
|
// Computes *this -= other assuming aligned bigints and *this >= other.
|
|
void subtract_aligned(const bigint& other) {
|
|
FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
|
|
FMT_ASSERT(compare(*this, other) >= 0, "");
|
|
bigit borrow = 0;
|
|
int i = other.exp_ - exp_;
|
|
for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) {
|
|
subtract_bigits(i, other.bigits_[j], borrow);
|
|
}
|
|
while (borrow > 0) subtract_bigits(i, 0, borrow);
|
|
remove_leading_zeros();
|
|
}
|
|
|
|
void multiply(uint32_t value) {
|
|
const double_bigit wide_value = value;
|
|
bigit carry = 0;
|
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
|
double_bigit result = bigits_[i] * wide_value + carry;
|
|
bigits_[i] = static_cast<bigit>(result);
|
|
carry = static_cast<bigit>(result >> bigit_bits);
|
|
}
|
|
if (carry != 0) bigits_.push_back(carry);
|
|
}
|
|
|
|
void multiply(uint64_t value) {
|
|
const bigit mask = ~bigit(0);
|
|
const double_bigit lower = value & mask;
|
|
const double_bigit upper = value >> bigit_bits;
|
|
double_bigit carry = 0;
|
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
|
double_bigit result = bigits_[i] * lower + (carry & mask);
|
|
carry =
|
|
bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits);
|
|
bigits_[i] = static_cast<bigit>(result);
|
|
}
|
|
while (carry != 0) {
|
|
bigits_.push_back(carry & mask);
|
|
carry >>= bigit_bits;
|
|
}
|
|
}
|
|
|
|
public:
|
|
bigint() : exp_(0) {}
|
|
explicit bigint(uint64_t n) { assign(n); }
|
|
~bigint() { assert(bigits_.capacity() <= bigits_capacity); }
|
|
|
|
bigint(const bigint&) = delete;
|
|
void operator=(const bigint&) = delete;
|
|
|
|
void assign(const bigint& other) {
|
|
auto size = other.bigits_.size();
|
|
bigits_.resize(size);
|
|
auto data = other.bigits_.data();
|
|
std::copy(data, data + size, make_checked(bigits_.data(), size));
|
|
exp_ = other.exp_;
|
|
}
|
|
|
|
void assign(uint64_t n) {
|
|
size_t num_bigits = 0;
|
|
do {
|
|
bigits_[num_bigits++] = n & ~bigit(0);
|
|
n >>= bigit_bits;
|
|
} while (n != 0);
|
|
bigits_.resize(num_bigits);
|
|
exp_ = 0;
|
|
}
|
|
|
|
int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
|
|
|
|
FMT_NOINLINE bigint& operator<<=(int shift) {
|
|
assert(shift >= 0);
|
|
exp_ += shift / bigit_bits;
|
|
shift %= bigit_bits;
|
|
if (shift == 0) return *this;
|
|
bigit carry = 0;
|
|
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
|
|
bigit c = bigits_[i] >> (bigit_bits - shift);
|
|
bigits_[i] = (bigits_[i] << shift) + carry;
|
|
carry = c;
|
|
}
|
|
if (carry != 0) bigits_.push_back(carry);
|
|
return *this;
|
|
}
|
|
|
|
template <typename Int> bigint& operator*=(Int value) {
|
|
FMT_ASSERT(value > 0, "");
|
|
multiply(uint32_or_64_or_128_t<Int>(value));
|
|
return *this;
|
|
}
|
|
|
|
friend int compare(const bigint& lhs, const bigint& rhs) {
|
|
int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
|
|
if (num_lhs_bigits != num_rhs_bigits)
|
|
return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
|
|
int i = static_cast<int>(lhs.bigits_.size()) - 1;
|
|
int j = static_cast<int>(rhs.bigits_.size()) - 1;
|
|
int end = i - j;
|
|
if (end < 0) end = 0;
|
|
for (; i >= end; --i, --j) {
|
|
bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
|
|
if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
|
|
}
|
|
if (i != j) return i > j ? 1 : -1;
|
|
return 0;
|
|
}
|
|
|
|
// Returns compare(lhs1 + lhs2, rhs).
|
|
friend int add_compare(const bigint& lhs1, const bigint& lhs2,
|
|
const bigint& rhs) {
|
|
int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits());
|
|
int num_rhs_bigits = rhs.num_bigits();
|
|
if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
|
|
if (max_lhs_bigits > num_rhs_bigits) return 1;
|
|
auto get_bigit = [](const bigint& n, int i) -> bigit {
|
|
return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
|
|
};
|
|
double_bigit borrow = 0;
|
|
int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_);
|
|
for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
|
|
double_bigit sum =
|
|
static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
|
|
bigit rhs_bigit = get_bigit(rhs, i);
|
|
if (sum > rhs_bigit + borrow) return 1;
|
|
borrow = rhs_bigit + borrow - sum;
|
|
if (borrow > 1) return -1;
|
|
borrow <<= bigit_bits;
|
|
}
|
|
return borrow != 0 ? -1 : 0;
|
|
}
|
|
|
|
// Assigns pow(10, exp) to this bigint.
|
|
void assign_pow10(int exp) {
|
|
assert(exp >= 0);
|
|
if (exp == 0) return assign(1);
|
|
// Find the top bit.
|
|
int bitmask = 1;
|
|
while (exp >= bitmask) bitmask <<= 1;
|
|
bitmask >>= 1;
|
|
// pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
|
|
// repeated squaring and multiplication.
|
|
assign(5);
|
|
bitmask >>= 1;
|
|
while (bitmask != 0) {
|
|
square();
|
|
if ((exp & bitmask) != 0) *this *= 5;
|
|
bitmask >>= 1;
|
|
}
|
|
*this <<= exp; // Multiply by pow(2, exp) by shifting.
|
|
}
|
|
|
|
void square() {
|
|
basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
|
|
int num_bigits = static_cast<int>(bigits_.size());
|
|
int num_result_bigits = 2 * num_bigits;
|
|
bigits_.resize(to_unsigned(num_result_bigits));
|
|
using accumulator_t = conditional_t<FMT_USE_INT128, uint128_t, accumulator>;
|
|
auto sum = accumulator_t();
|
|
for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
|
|
// Compute bigit at position bigit_index of the result by adding
|
|
// cross-product terms n[i] * n[j] such that i + j == bigit_index.
|
|
for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
|
|
// Most terms are multiplied twice which can be optimized in the future.
|
|
sum += static_cast<double_bigit>(n[i]) * n[j];
|
|
}
|
|
(*this)[bigit_index] = static_cast<bigit>(sum);
|
|
sum >>= bits<bigit>::value; // Compute the carry.
|
|
}
|
|
// Do the same for the top half.
|
|
for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
|
|
++bigit_index) {
|
|
for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
|
|
sum += static_cast<double_bigit>(n[i++]) * n[j--];
|
|
(*this)[bigit_index] = static_cast<bigit>(sum);
|
|
sum >>= bits<bigit>::value;
|
|
}
|
|
--num_result_bigits;
|
|
remove_leading_zeros();
|
|
exp_ *= 2;
|
|
}
|
|
|
|
// Divides this bignum by divisor, assigning the remainder to this and
|
|
// returning the quotient.
|
|
int divmod_assign(const bigint& divisor) {
|
|
FMT_ASSERT(this != &divisor, "");
|
|
if (compare(*this, divisor) < 0) return 0;
|
|
int num_bigits = static_cast<int>(bigits_.size());
|
|
FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
|
|
int exp_difference = exp_ - divisor.exp_;
|
|
if (exp_difference > 0) {
|
|
// Align bigints by adding trailing zeros to simplify subtraction.
|
|
bigits_.resize(to_unsigned(num_bigits + exp_difference));
|
|
for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
|
|
bigits_[j] = bigits_[i];
|
|
std::uninitialized_fill_n(bigits_.data(), exp_difference, 0);
|
|
exp_ -= exp_difference;
|
|
}
|
|
int quotient = 0;
|
|
do {
|
|
subtract_aligned(divisor);
|
|
++quotient;
|
|
} while (compare(*this, divisor) >= 0);
|
|
return quotient;
|
|
}
|
|
};
|
|
|
|
enum class round_direction { unknown, up, down };
|
|
|
|
// Given the divisor (normally a power of 10), the remainder = v % divisor for
|
|
// some number v and the error, returns whether v should be rounded up, down, or
|
|
// whether the rounding direction can't be determined due to error.
|
|
// error should be less than divisor / 2.
|
|
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
|
|
uint64_t error) {
|
|
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
|
|
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
|
|
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
|
|
// Round down if (remainder + error) * 2 <= divisor.
|
|
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
|
|
return round_direction::down;
|
|
// Round up if (remainder - error) * 2 >= divisor.
|
|
if (remainder >= error &&
|
|
remainder - error >= divisor - (remainder - error)) {
|
|
return round_direction::up;
|
|
}
|
|
return round_direction::unknown;
|
|
}
|
|
|
|
namespace digits {
|
|
enum result {
|
|
more, // Generate more digits.
|
|
done, // Done generating digits.
|
|
error // Digit generation cancelled due to an error.
|
|
};
|
|
}
|
|
|
|
// A version of count_digits optimized for grisu_gen_digits.
|
|
inline int grisu_count_digits(uint32_t n) {
|
|
if (n < 10) return 1;
|
|
if (n < 100) return 2;
|
|
if (n < 1000) return 3;
|
|
if (n < 10000) return 4;
|
|
if (n < 100000) return 5;
|
|
if (n < 1000000) return 6;
|
|
if (n < 10000000) return 7;
|
|
if (n < 100000000) return 8;
|
|
if (n < 1000000000) return 9;
|
|
return 10;
|
|
}
|
|
|
|
// Generates output using the Grisu digit-gen algorithm.
|
|
// error: the size of the region (lower, upper) outside of which numbers
|
|
// definitely do not round to value (Delta in Grisu3).
|
|
template <typename Handler>
|
|
FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error,
|
|
int& exp, Handler& handler) {
|
|
const fp one(1ULL << -value.e, value.e);
|
|
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
|
|
// zero because it contains a product of two 64-bit numbers with MSB set (due
|
|
// to normalization) - 1, shifted right by at most 60 bits.
|
|
auto integral = static_cast<uint32_t>(value.f >> -one.e);
|
|
FMT_ASSERT(integral != 0, "");
|
|
FMT_ASSERT(integral == value.f >> -one.e, "");
|
|
// The fractional part of scaled value (p2 in Grisu) c = value % one.
|
|
uint64_t fractional = value.f & (one.f - 1);
|
|
exp = grisu_count_digits(integral); // kappa in Grisu.
|
|
// Divide by 10 to prevent overflow.
|
|
auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e,
|
|
value.f / 10, error * 10, exp);
|
|
if (result != digits::more) return result;
|
|
// Generate digits for the integral part. This can produce up to 10 digits.
|
|
do {
|
|
uint32_t digit = 0;
|
|
auto divmod_integral = [&](uint32_t divisor) {
|
|
digit = integral / divisor;
|
|
integral %= divisor;
|
|
};
|
|
// This optimization by Milo Yip reduces the number of integer divisions by
|
|
// one per iteration.
|
|
switch (exp) {
|
|
case 10:
|
|
divmod_integral(1000000000);
|
|
break;
|
|
case 9:
|
|
divmod_integral(100000000);
|
|
break;
|
|
case 8:
|
|
divmod_integral(10000000);
|
|
break;
|
|
case 7:
|
|
divmod_integral(1000000);
|
|
break;
|
|
case 6:
|
|
divmod_integral(100000);
|
|
break;
|
|
case 5:
|
|
divmod_integral(10000);
|
|
break;
|
|
case 4:
|
|
divmod_integral(1000);
|
|
break;
|
|
case 3:
|
|
divmod_integral(100);
|
|
break;
|
|
case 2:
|
|
divmod_integral(10);
|
|
break;
|
|
case 1:
|
|
digit = integral;
|
|
integral = 0;
|
|
break;
|
|
default:
|
|
FMT_ASSERT(false, "invalid number of digits");
|
|
}
|
|
--exp;
|
|
uint64_t remainder =
|
|
(static_cast<uint64_t>(integral) << -one.e) + fractional;
|
|
result = handler.on_digit(static_cast<char>('0' + digit),
|
|
data::powers_of_10_64[exp] << -one.e, remainder,
|
|
error, exp, true);
|
|
if (result != digits::more) return result;
|
|
} while (exp > 0);
|
|
// Generate digits for the fractional part.
|
|
for (;;) {
|
|
fractional *= 10;
|
|
error *= 10;
|
|
char digit =
|
|
static_cast<char>('0' + static_cast<char>(fractional >> -one.e));
|
|
fractional &= one.f - 1;
|
|
--exp;
|
|
result = handler.on_digit(digit, one.f, fractional, error, exp, false);
|
|
if (result != digits::more) return result;
|
|
}
|
|
}
|
|
|
|
// The fixed precision digit handler.
|
|
struct fixed_handler {
|
|
char* buf;
|
|
int size;
|
|
int precision;
|
|
int exp10;
|
|
bool fixed;
|
|
|
|
digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
|
|
int& exp) {
|
|
// Non-fixed formats require at least one digit and no precision adjustment.
|
|
if (!fixed) return digits::more;
|
|
// Adjust fixed precision by exponent because it is relative to decimal
|
|
// point.
|
|
precision += exp + exp10;
|
|
// Check if precision is satisfied just by leading zeros, e.g.
|
|
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
|
|
if (precision > 0) return digits::more;
|
|
if (precision < 0) return digits::done;
|
|
auto dir = get_round_direction(divisor, remainder, error);
|
|
if (dir == round_direction::unknown) return digits::error;
|
|
buf[size++] = dir == round_direction::up ? '1' : '0';
|
|
return digits::done;
|
|
}
|
|
|
|
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
|
|
uint64_t error, int, bool integral) {
|
|
FMT_ASSERT(remainder < divisor, "");
|
|
buf[size++] = digit;
|
|
if (size < precision) return digits::more;
|
|
if (!integral) {
|
|
// Check if error * 2 < divisor with overflow prevention.
|
|
// The check is not needed for the integral part because error = 1
|
|
// and divisor > (1 << 32) there.
|
|
if (error >= divisor || error >= divisor - error) return digits::error;
|
|
} else {
|
|
FMT_ASSERT(error == 1 && divisor > 2, "");
|
|
}
|
|
auto dir = get_round_direction(divisor, remainder, error);
|
|
if (dir != round_direction::up)
|
|
return dir == round_direction::down ? digits::done : digits::error;
|
|
++buf[size - 1];
|
|
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
|
|
buf[i] = '0';
|
|
++buf[i - 1];
|
|
}
|
|
if (buf[0] > '9') {
|
|
buf[0] = '1';
|
|
buf[size++] = '0';
|
|
}
|
|
return digits::done;
|
|
}
|
|
};
|
|
|
|
// The shortest representation digit handler.
|
|
struct grisu_shortest_handler {
|
|
char* buf;
|
|
int size;
|
|
// Distance between scaled value and upper bound (wp_W in Grisu3).
|
|
uint64_t diff;
|
|
|
|
digits::result on_start(uint64_t, uint64_t, uint64_t, int&) {
|
|
return digits::more;
|
|
}
|
|
|
|
// Decrement the generated number approaching value from above.
|
|
void round(uint64_t d, uint64_t divisor, uint64_t& remainder,
|
|
uint64_t error) {
|
|
while (
|
|
remainder < d && error - remainder >= divisor &&
|
|
(remainder + divisor < d || d - remainder >= remainder + divisor - d)) {
|
|
--buf[size - 1];
|
|
remainder += divisor;
|
|
}
|
|
}
|
|
|
|
// Implements Grisu's round_weed.
|
|
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
|
|
uint64_t error, int exp, bool integral) {
|
|
buf[size++] = digit;
|
|
if (remainder >= error) return digits::more;
|
|
uint64_t unit = integral ? 1 : data::powers_of_10_64[-exp];
|
|
uint64_t up = (diff - 1) * unit; // wp_Wup
|
|
round(up, divisor, remainder, error);
|
|
uint64_t down = (diff + 1) * unit; // wp_Wdown
|
|
if (remainder < down && error - remainder >= divisor &&
|
|
(remainder + divisor < down ||
|
|
down - remainder > remainder + divisor - down)) {
|
|
return digits::error;
|
|
}
|
|
return 2 * unit <= remainder && remainder <= error - 4 * unit
|
|
? digits::done
|
|
: digits::error;
|
|
}
|
|
};
|
|
|
|
// Formats value using a variation of the Fixed-Precision Positive
|
|
// Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
|
|
// https://fmt.dev/p372-steele.pdf.
|
|
template <typename Double>
|
|
void fallback_format(Double d, buffer<char>& buf, int& exp10) {
|
|
bigint numerator; // 2 * R in (FPP)^2.
|
|
bigint denominator; // 2 * S in (FPP)^2.
|
|
// lower and upper are differences between value and corresponding boundaries.
|
|
bigint lower; // (M^- in (FPP)^2).
|
|
bigint upper_store; // upper's value if different from lower.
|
|
bigint* upper = nullptr; // (M^+ in (FPP)^2).
|
|
fp value;
|
|
// Shift numerator and denominator by an extra bit or two (if lower boundary
|
|
// is closer) to make lower and upper integers. This eliminates multiplication
|
|
// by 2 during later computations.
|
|
// TODO: handle float
|
|
int shift = value.assign(d) ? 2 : 1;
|
|
uint64_t significand = value.f << shift;
|
|
if (value.e >= 0) {
|
|
numerator.assign(significand);
|
|
numerator <<= value.e;
|
|
lower.assign(1);
|
|
lower <<= value.e;
|
|
if (shift != 1) {
|
|
upper_store.assign(1);
|
|
upper_store <<= value.e + 1;
|
|
upper = &upper_store;
|
|
}
|
|
denominator.assign_pow10(exp10);
|
|
denominator <<= 1;
|
|
} else if (exp10 < 0) {
|
|
numerator.assign_pow10(-exp10);
|
|
lower.assign(numerator);
|
|
if (shift != 1) {
|
|
upper_store.assign(numerator);
|
|
upper_store <<= 1;
|
|
upper = &upper_store;
|
|
}
|
|
numerator *= significand;
|
|
denominator.assign(1);
|
|
denominator <<= shift - value.e;
|
|
} else {
|
|
numerator.assign(significand);
|
|
denominator.assign_pow10(exp10);
|
|
denominator <<= shift - value.e;
|
|
lower.assign(1);
|
|
if (shift != 1) {
|
|
upper_store.assign(1ULL << 1);
|
|
upper = &upper_store;
|
|
}
|
|
}
|
|
if (!upper) upper = &lower;
|
|
// Invariant: value == (numerator / denominator) * pow(10, exp10).
|
|
bool even = (value.f & 1) == 0;
|
|
int num_digits = 0;
|
|
char* data = buf.data();
|
|
for (;;) {
|
|
int digit = numerator.divmod_assign(denominator);
|
|
bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
|
|
// numerator + upper >[=] pow10:
|
|
bool high = add_compare(numerator, *upper, denominator) + even > 0;
|
|
data[num_digits++] = static_cast<char>('0' + digit);
|
|
if (low || high) {
|
|
if (!low) {
|
|
++data[num_digits - 1];
|
|
} else if (high) {
|
|
int result = add_compare(numerator, numerator, denominator);
|
|
// Round half to even.
|
|
if (result > 0 || (result == 0 && (digit % 2) != 0))
|
|
++data[num_digits - 1];
|
|
}
|
|
buf.resize(to_unsigned(num_digits));
|
|
exp10 -= num_digits - 1;
|
|
return;
|
|
}
|
|
numerator *= 10;
|
|
lower *= 10;
|
|
if (upper != &lower) *upper *= 10;
|
|
}
|
|
}
|
|
|
|
// Formats value using the Grisu algorithm
|
|
// (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf)
|
|
// if T is a IEEE754 binary32 or binary64 and snprintf otherwise.
|
|
template <typename T>
|
|
int format_float(T value, int precision, float_specs specs, buffer<char>& buf) {
|
|
static_assert(!std::is_same<T, float>::value, "");
|
|
FMT_ASSERT(value >= 0, "value is negative");
|
|
|
|
const bool fixed = specs.format == float_format::fixed;
|
|
if (value <= 0) { // <= instead of == to silence a warning.
|
|
if (precision <= 0 || !fixed) {
|
|
buf.push_back('0');
|
|
return 0;
|
|
}
|
|
buf.resize(to_unsigned(precision));
|
|
std::uninitialized_fill_n(buf.data(), precision, '0');
|
|
return -precision;
|
|
}
|
|
|
|
if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf);
|
|
|
|
int exp = 0;
|
|
const int min_exp = -60; // alpha in Grisu.
|
|
int cached_exp10 = 0; // K in Grisu.
|
|
if (precision < 0) {
|
|
fp fp_value;
|
|
auto boundaries = specs.binary32
|
|
? fp_value.assign_float_with_boundaries(value)
|
|
: fp_value.assign_with_boundaries(value);
|
|
fp_value = normalize(fp_value);
|
|
// Find a cached power of 10 such that multiplying value by it will bring
|
|
// the exponent in the range [min_exp, -32].
|
|
const fp cached_pow = get_cached_power(
|
|
min_exp - (fp_value.e + fp::significand_size), cached_exp10);
|
|
// Multiply value and boundaries by the cached power of 10.
|
|
fp_value = fp_value * cached_pow;
|
|
boundaries.lower = multiply(boundaries.lower, cached_pow.f);
|
|
boundaries.upper = multiply(boundaries.upper, cached_pow.f);
|
|
assert(min_exp <= fp_value.e && fp_value.e <= -32);
|
|
--boundaries.lower; // \tilde{M}^- - 1 ulp -> M^-_{\downarrow}.
|
|
++boundaries.upper; // \tilde{M}^+ + 1 ulp -> M^+_{\uparrow}.
|
|
// Numbers outside of (lower, upper) definitely do not round to value.
|
|
grisu_shortest_handler handler{buf.data(), 0,
|
|
boundaries.upper - fp_value.f};
|
|
auto result =
|
|
grisu_gen_digits(fp(boundaries.upper, fp_value.e),
|
|
boundaries.upper - boundaries.lower, exp, handler);
|
|
if (result == digits::error) {
|
|
exp += handler.size - cached_exp10 - 1;
|
|
fallback_format(value, buf, exp);
|
|
return exp;
|
|
}
|
|
buf.resize(to_unsigned(handler.size));
|
|
} else {
|
|
if (precision > 17) return snprintf_float(value, precision, specs, buf);
|
|
fp normalized = normalize(fp(value));
|
|
const auto cached_pow = get_cached_power(
|
|
min_exp - (normalized.e + fp::significand_size), cached_exp10);
|
|
normalized = normalized * cached_pow;
|
|
fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
|
|
if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error)
|
|
return snprintf_float(value, precision, specs, buf);
|
|
int num_digits = handler.size;
|
|
if (!fixed) {
|
|
// Remove trailing zeros.
|
|
while (num_digits > 0 && buf[num_digits - 1] == '0') {
|
|
--num_digits;
|
|
++exp;
|
|
}
|
|
}
|
|
buf.resize(to_unsigned(num_digits));
|
|
}
|
|
return exp - cached_exp10;
|
|
}
|
|
|
|
template <typename T>
|
|
int snprintf_float(T value, int precision, float_specs specs,
|
|
buffer<char>& buf) {
|
|
// Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
|
|
FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer");
|
|
static_assert(!std::is_same<T, float>::value, "");
|
|
|
|
// Subtract 1 to account for the difference in precision since we use %e for
|
|
// both general and exponent format.
|
|
if (specs.format == float_format::general ||
|
|
specs.format == float_format::exp)
|
|
precision = (precision >= 0 ? precision : 6) - 1;
|
|
|
|
// Build the format string.
|
|
enum { max_format_size = 7 }; // The longest format is "%#.*Le".
|
|
char format[max_format_size];
|
|
char* format_ptr = format;
|
|
*format_ptr++ = '%';
|
|
if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#';
|
|
if (precision >= 0) {
|
|
*format_ptr++ = '.';
|
|
*format_ptr++ = '*';
|
|
}
|
|
if (std::is_same<T, long double>()) *format_ptr++ = 'L';
|
|
*format_ptr++ = specs.format != float_format::hex
|
|
? (specs.format == float_format::fixed ? 'f' : 'e')
|
|
: (specs.upper ? 'A' : 'a');
|
|
*format_ptr = '\0';
|
|
|
|
// Format using snprintf.
|
|
auto offset = buf.size();
|
|
for (;;) {
|
|
auto begin = buf.data() + offset;
|
|
auto capacity = buf.capacity() - offset;
|
|
#ifdef FMT_FUZZ
|
|
if (precision > 100000)
|
|
throw std::runtime_error(
|
|
"fuzz mode - avoid large allocation inside snprintf");
|
|
#endif
|
|
// Suppress the warning about a nonliteral format string.
|
|
// Cannot use auto because of a bug in MinGW (#1532).
|
|
int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF;
|
|
int result = precision >= 0
|
|
? snprintf_ptr(begin, capacity, format, precision, value)
|
|
: snprintf_ptr(begin, capacity, format, value);
|
|
if (result < 0) {
|
|
buf.reserve(buf.capacity() + 1); // The buffer will grow exponentially.
|
|
continue;
|
|
}
|
|
auto size = to_unsigned(result);
|
|
// Size equal to capacity means that the last character was truncated.
|
|
if (size >= capacity) {
|
|
buf.reserve(size + offset + 1); // Add 1 for the terminating '\0'.
|
|
continue;
|
|
}
|
|
auto is_digit = [](char c) { return c >= '0' && c <= '9'; };
|
|
if (specs.format == float_format::fixed) {
|
|
if (precision == 0) {
|
|
buf.resize(size);
|
|
return 0;
|
|
}
|
|
// Find and remove the decimal point.
|
|
auto end = begin + size, p = end;
|
|
do {
|
|
--p;
|
|
} while (is_digit(*p));
|
|
int fraction_size = static_cast<int>(end - p - 1);
|
|
std::memmove(p, p + 1, to_unsigned(fraction_size));
|
|
buf.resize(size - 1);
|
|
return -fraction_size;
|
|
}
|
|
if (specs.format == float_format::hex) {
|
|
buf.resize(size + offset);
|
|
return 0;
|
|
}
|
|
// Find and parse the exponent.
|
|
auto end = begin + size, exp_pos = end;
|
|
do {
|
|
--exp_pos;
|
|
} while (*exp_pos != 'e');
|
|
char sign = exp_pos[1];
|
|
assert(sign == '+' || sign == '-');
|
|
int exp = 0;
|
|
auto p = exp_pos + 2; // Skip 'e' and sign.
|
|
do {
|
|
assert(is_digit(*p));
|
|
exp = exp * 10 + (*p++ - '0');
|
|
} while (p != end);
|
|
if (sign == '-') exp = -exp;
|
|
int fraction_size = 0;
|
|
if (exp_pos != begin + 1) {
|
|
// Remove trailing zeros.
|
|
auto fraction_end = exp_pos - 1;
|
|
while (*fraction_end == '0') --fraction_end;
|
|
// Move the fractional part left to get rid of the decimal point.
|
|
fraction_size = static_cast<int>(fraction_end - begin - 1);
|
|
std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size));
|
|
}
|
|
buf.resize(to_unsigned(fraction_size) + offset + 1);
|
|
return exp - fraction_size;
|
|
}
|
|
}
|
|
|
|
// A public domain branchless UTF-8 decoder by Christopher Wellons:
|
|
// https://github.com/skeeto/branchless-utf8
|
|
/* Decode the next character, c, from buf, reporting errors in e.
|
|
*
|
|
* Since this is a branchless decoder, four bytes will be read from the
|
|
* buffer regardless of the actual length of the next character. This
|
|
* means the buffer _must_ have at least three bytes of zero padding
|
|
* following the end of the data stream.
|
|
*
|
|
* Errors are reported in e, which will be non-zero if the parsed
|
|
* character was somehow invalid: invalid byte sequence, non-canonical
|
|
* encoding, or a surrogate half.
|
|
*
|
|
* The function returns a pointer to the next character. When an error
|
|
* occurs, this pointer will be a guess that depends on the particular
|
|
* error, but it will always advance at least one byte.
|
|
*/
|
|
FMT_FUNC const char* utf8_decode(const char* buf, uint32_t* c, int* e) {
|
|
static const char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 2, 2, 2, 2, 3, 3, 4, 0};
|
|
static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
|
|
static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
|
|
static const int shiftc[] = {0, 18, 12, 6, 0};
|
|
static const int shifte[] = {0, 6, 4, 2, 0};
|
|
|
|
auto s = reinterpret_cast<const unsigned char*>(buf);
|
|
int len = lengths[s[0] >> 3];
|
|
|
|
// Compute the pointer to the next character early so that the next
|
|
// iteration can start working on the next character. Neither Clang
|
|
// nor GCC figure out this reordering on their own.
|
|
const char* next = buf + len + !len;
|
|
|
|
// Assume a four-byte character and load four bytes. Unused bits are
|
|
// shifted out.
|
|
*c = uint32_t(s[0] & masks[len]) << 18;
|
|
*c |= uint32_t(s[1] & 0x3f) << 12;
|
|
*c |= uint32_t(s[2] & 0x3f) << 6;
|
|
*c |= uint32_t(s[3] & 0x3f) << 0;
|
|
*c >>= shiftc[len];
|
|
|
|
// Accumulate the various error conditions.
|
|
*e = (*c < mins[len]) << 6; // non-canonical encoding
|
|
*e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
|
|
*e |= (*c > 0x10FFFF) << 8; // out of range?
|
|
*e |= (s[1] & 0xc0) >> 2;
|
|
*e |= (s[2] & 0xc0) >> 4;
|
|
*e |= (s[3]) >> 6;
|
|
*e ^= 0x2a; // top two bits of each tail byte correct?
|
|
*e >>= shifte[len];
|
|
|
|
return next;
|
|
}
|
|
} // namespace detail
|
|
|
|
template <> struct formatter<detail::bigint> {
|
|
format_parse_context::iterator parse(format_parse_context& ctx) {
|
|
return ctx.begin();
|
|
}
|
|
|
|
format_context::iterator format(const detail::bigint& n,
|
|
format_context& ctx) {
|
|
auto out = ctx.out();
|
|
bool first = true;
|
|
for (auto i = n.bigits_.size(); i > 0; --i) {
|
|
auto value = n.bigits_[i - 1u];
|
|
if (first) {
|
|
out = format_to(out, "{:x}", value);
|
|
first = false;
|
|
continue;
|
|
}
|
|
out = format_to(out, "{:08x}", value);
|
|
}
|
|
if (n.exp_ > 0)
|
|
out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits);
|
|
return out;
|
|
}
|
|
};
|
|
|
|
FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
|
|
auto transcode = [this](const char* p) {
|
|
auto cp = uint32_t();
|
|
auto error = 0;
|
|
p = utf8_decode(p, &cp, &error);
|
|
if (error != 0) FMT_THROW(std::runtime_error("invalid utf8"));
|
|
if (cp <= 0xFFFF) {
|
|
buffer_.push_back(static_cast<wchar_t>(cp));
|
|
} else {
|
|
cp -= 0x10000;
|
|
buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
|
|
buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
|
|
}
|
|
return p;
|
|
};
|
|
auto p = s.data();
|
|
const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
|
|
if (s.size() >= block_size) {
|
|
for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p);
|
|
}
|
|
if (auto num_chars_left = s.data() + s.size() - p) {
|
|
char buf[2 * block_size - 1] = {};
|
|
memcpy(buf, p, to_unsigned(num_chars_left));
|
|
p = buf;
|
|
do {
|
|
p = transcode(p);
|
|
} while (p - buf < num_chars_left);
|
|
}
|
|
buffer_.push_back(0);
|
|
}
|
|
|
|
FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
FMT_TRY {
|
|
memory_buffer buf;
|
|
buf.resize(inline_buffer_size);
|
|
for (;;) {
|
|
char* system_message = &buf[0];
|
|
int result =
|
|
detail::safe_strerror(error_code, system_message, buf.size());
|
|
if (result == 0) {
|
|
format_to(std::back_inserter(out), "{}: {}", message, system_message);
|
|
return;
|
|
}
|
|
if (result != ERANGE)
|
|
break; // Can't get error message, report error code instead.
|
|
buf.resize(buf.size() * 2);
|
|
}
|
|
}
|
|
FMT_CATCH(...) {}
|
|
format_error_code(out, error_code, message);
|
|
}
|
|
|
|
FMT_FUNC void detail::error_handler::on_error(const char* message) {
|
|
FMT_THROW(format_error(message));
|
|
}
|
|
|
|
FMT_FUNC void report_system_error(int error_code,
|
|
fmt::string_view message) FMT_NOEXCEPT {
|
|
report_error(format_system_error, error_code, message);
|
|
}
|
|
|
|
struct stringifier {
|
|
template <typename T> FMT_INLINE std::string operator()(T value) const {
|
|
return to_string(value);
|
|
}
|
|
std::string operator()(basic_format_arg<format_context>::handle h) const {
|
|
memory_buffer buf;
|
|
detail::buffer<char>& base = buf;
|
|
format_parse_context parse_ctx({});
|
|
format_context format_ctx(std::back_inserter(base), {}, {});
|
|
h.format(parse_ctx, format_ctx);
|
|
return to_string(buf);
|
|
}
|
|
};
|
|
|
|
FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) {
|
|
if (format_str.size() == 2 && equal2(format_str.data(), "{}")) {
|
|
auto arg = args.get(0);
|
|
if (!arg) error_handler().on_error("argument not found");
|
|
return visit_format_arg(stringifier(), arg);
|
|
}
|
|
memory_buffer buffer;
|
|
detail::vformat_to(buffer, format_str, args);
|
|
return to_string(buffer);
|
|
}
|
|
|
|
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
|
|
memory_buffer buffer;
|
|
detail::vformat_to(buffer, format_str,
|
|
basic_format_args<buffer_context<char>>(args));
|
|
#ifdef _WIN32
|
|
auto fd = _fileno(f);
|
|
if (_isatty(fd)) {
|
|
detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size()));
|
|
auto written = DWORD();
|
|
if (!WriteConsoleW(reinterpret_cast<HANDLE>(_get_osfhandle(fd)),
|
|
u16.c_str(), static_cast<DWORD>(u16.size()), &written,
|
|
nullptr)) {
|
|
FMT_THROW(format_error("failed to write to console"));
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
detail::fwrite_fully(buffer.data(), 1, buffer.size(), f);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
// Print assuming legacy (non-Unicode) encoding.
|
|
FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str,
|
|
format_args args) {
|
|
memory_buffer buffer;
|
|
detail::vformat_to(buffer, format_str,
|
|
basic_format_args<buffer_context<char>>(args));
|
|
fwrite_fully(buffer.data(), 1, buffer.size(), f);
|
|
}
|
|
#endif
|
|
|
|
FMT_FUNC void vprint(string_view format_str, format_args args) {
|
|
vprint(stdout, format_str, args);
|
|
}
|
|
|
|
FMT_END_NAMESPACE
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // FMT_FORMAT_INL_H_
|