dynarmic/src/backend/x64/reg_alloc.cpp
Lioncash d69fceec55 value: Move ImmediateToU64() to be a part of Value's interface
This'll make it slightly nicer to do basic constant folding for 32-bit
and 64-bit variants of the same IR opcode type. By that, I mean it's
possible to inspect immediate values without a bunch of conditional
checks beforehand to verify that it's possible to call GetU32() or
GetU64, etc.
2020-04-22 20:55:50 +01:00

675 lines
21 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <algorithm>
#include <numeric>
#include <utility>
#include <fmt/ostream.h>
#include <xbyak.h>
#include "backend/x64/abi.h"
#include "backend/x64/reg_alloc.h"
#include "common/assert.h"
namespace Dynarmic::BackendX64 {
#define MAYBE_AVX(OPCODE, ...) \
[&] { \
if (code.DoesCpuSupport(Xbyak::util::Cpu::tAVX)) { \
code.v##OPCODE(__VA_ARGS__); \
} else { \
code.OPCODE(__VA_ARGS__); \
} \
}()
static bool CanExchange(HostLoc a, HostLoc b) {
return HostLocIsGPR(a) && HostLocIsGPR(b);
}
// Minimum number of bits required to represent a type
static size_t GetBitWidth(IR::Type type) {
switch (type) {
case IR::Type::A32Reg:
case IR::Type::A32ExtReg:
case IR::Type::A64Reg:
case IR::Type::A64Vec:
case IR::Type::CoprocInfo:
case IR::Type::Cond:
case IR::Type::Void:
case IR::Type::Table:
ASSERT_MSG(false, "Type {} cannot be represented at runtime", type);
return 0;
case IR::Type::Opaque:
ASSERT_MSG(false, "Not a concrete type");
return 0;
case IR::Type::U1:
return 8;
case IR::Type::U8:
return 8;
case IR::Type::U16:
return 16;
case IR::Type::U32:
return 32;
case IR::Type::U64:
return 64;
case IR::Type::U128:
return 128;
case IR::Type::NZCVFlags:
return 32; // TODO: Update to 16 when flags optimization is done
}
UNREACHABLE();
return 0;
}
static bool IsValuelessType(IR::Type type) {
switch (type) {
case IR::Type::Table:
return true;
default:
return false;
}
}
bool HostLocInfo::IsLocked() const {
return is_being_used_count > 0;
}
bool HostLocInfo::IsEmpty() const {
return is_being_used_count == 0 && values.empty();
}
bool HostLocInfo::IsLastUse() const {
return is_being_used_count == 0 && current_references == 1 && accumulated_uses + 1 == total_uses;
}
void HostLocInfo::ReadLock() {
ASSERT(!is_scratch);
is_being_used_count++;
}
void HostLocInfo::WriteLock() {
ASSERT(is_being_used_count == 0);
is_being_used_count++;
is_scratch = true;
}
void HostLocInfo::AddArgReference() {
current_references++;
ASSERT(accumulated_uses + current_references <= total_uses);
}
void HostLocInfo::ReleaseOne() {
is_being_used_count--;
is_scratch = false;
if (current_references == 0)
return;
accumulated_uses++;
current_references--;
if (current_references == 0)
ReleaseAll();
}
void HostLocInfo::ReleaseAll() {
accumulated_uses += current_references;
current_references = 0;
ASSERT(total_uses == std::accumulate(values.begin(), values.end(), size_t(0), [](size_t sum, IR::Inst* inst) { return sum + inst->UseCount(); }));
if (total_uses == accumulated_uses) {
values.clear();
accumulated_uses = 0;
total_uses = 0;
max_bit_width = 0;
}
is_being_used_count = 0;
is_scratch = false;
}
bool HostLocInfo::ContainsValue(const IR::Inst* inst) const {
return std::find(values.begin(), values.end(), inst) != values.end();
}
size_t HostLocInfo::GetMaxBitWidth() const {
return max_bit_width;
}
void HostLocInfo::AddValue(IR::Inst* inst) {
values.push_back(inst);
total_uses += inst->UseCount();
max_bit_width = std::max(max_bit_width, GetBitWidth(inst->GetType()));
}
IR::Type Argument::GetType() const {
return value.GetType();
}
bool Argument::IsImmediate() const {
return value.IsImmediate();
}
bool Argument::IsVoid() const {
return GetType() == IR::Type::Void;
}
bool Argument::FitsInImmediateU32() const {
if (!IsImmediate())
return false;
const u64 imm = value.GetImmediateAsU64();
return imm < 0x100000000;
}
bool Argument::FitsInImmediateS32() const {
if (!IsImmediate())
return false;
const s64 imm = static_cast<s64>(value.GetImmediateAsU64());
return -s64(0x80000000) <= imm && imm <= s64(0x7FFFFFFF);
}
bool Argument::GetImmediateU1() const {
return value.GetU1();
}
u8 Argument::GetImmediateU8() const {
const u64 imm = value.GetImmediateAsU64();
ASSERT(imm < 0x100);
return u8(imm);
}
u16 Argument::GetImmediateU16() const {
const u64 imm = value.GetImmediateAsU64();
ASSERT(imm < 0x10000);
return u16(imm);
}
u32 Argument::GetImmediateU32() const {
const u64 imm = value.GetImmediateAsU64();
ASSERT(imm < 0x100000000);
return u32(imm);
}
u64 Argument::GetImmediateS32() const {
ASSERT(FitsInImmediateS32());
return value.GetImmediateAsU64();
}
u64 Argument::GetImmediateU64() const {
return value.GetImmediateAsU64();
}
IR::Cond Argument::GetImmediateCond() const {
ASSERT(IsImmediate() && GetType() == IR::Type::Cond);
return value.GetCond();
}
bool Argument::IsInGpr() const {
if (IsImmediate())
return false;
return HostLocIsGPR(*reg_alloc.ValueLocation(value.GetInst()));
}
bool Argument::IsInXmm() const {
if (IsImmediate())
return false;
return HostLocIsXMM(*reg_alloc.ValueLocation(value.GetInst()));
}
bool Argument::IsInMemory() const {
if (IsImmediate())
return false;
return HostLocIsSpill(*reg_alloc.ValueLocation(value.GetInst()));
}
RegAlloc::ArgumentInfo RegAlloc::GetArgumentInfo(IR::Inst* inst) {
ArgumentInfo ret = {Argument{*this}, Argument{*this}, Argument{*this}, Argument{*this}};
for (size_t i = 0; i < inst->NumArgs(); i++) {
const IR::Value& arg = inst->GetArg(i);
ret[i].value = arg;
if (!arg.IsImmediate() && !IsValuelessType(arg.GetType())) {
ASSERT_MSG(ValueLocation(arg.GetInst()), "argument must already been defined");
LocInfo(*ValueLocation(arg.GetInst())).AddArgReference();
}
}
return ret;
}
Xbyak::Reg64 RegAlloc::UseGpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseImpl(arg.value, any_gpr));
}
Xbyak::Xmm RegAlloc::UseXmm(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToXmm(UseImpl(arg.value, any_xmm));
}
OpArg RegAlloc::UseOpArg(Argument& arg) {
return UseGpr(arg);
}
void RegAlloc::Use(Argument& arg, HostLoc host_loc) {
ASSERT(!arg.allocated);
arg.allocated = true;
UseImpl(arg.value, {host_loc});
}
Xbyak::Reg64 RegAlloc::UseScratchGpr(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToReg64(UseScratchImpl(arg.value, any_gpr));
}
Xbyak::Xmm RegAlloc::UseScratchXmm(Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
return HostLocToXmm(UseScratchImpl(arg.value, any_xmm));
}
void RegAlloc::UseScratch(Argument& arg, HostLoc host_loc) {
ASSERT(!arg.allocated);
arg.allocated = true;
UseScratchImpl(arg.value, {host_loc});
}
void RegAlloc::DefineValue(IR::Inst* inst, const Xbyak::Reg& reg) {
ASSERT(reg.getKind() == Xbyak::Operand::XMM || reg.getKind() == Xbyak::Operand::REG);
HostLoc hostloc = static_cast<HostLoc>(reg.getIdx() + static_cast<size_t>(reg.getKind() == Xbyak::Operand::XMM ? HostLoc::XMM0 : HostLoc::RAX));
DefineValueImpl(inst, hostloc);
}
void RegAlloc::DefineValue(IR::Inst* inst, Argument& arg) {
ASSERT(!arg.allocated);
arg.allocated = true;
DefineValueImpl(inst, arg.value);
}
void RegAlloc::Release(const Xbyak::Reg& reg) {
ASSERT(reg.getKind() == Xbyak::Operand::XMM || reg.getKind() == Xbyak::Operand::REG);
const HostLoc hostloc = static_cast<HostLoc>(reg.getIdx() + static_cast<size_t>(reg.getKind() == Xbyak::Operand::XMM ? HostLoc::XMM0 : HostLoc::RAX));
LocInfo(hostloc).ReleaseOne();
}
Xbyak::Reg64 RegAlloc::ScratchGpr(HostLocList desired_locations) {
return HostLocToReg64(ScratchImpl(desired_locations));
}
Xbyak::Xmm RegAlloc::ScratchXmm(HostLocList desired_locations) {
return HostLocToXmm(ScratchImpl(desired_locations));
}
HostLoc RegAlloc::UseImpl(IR::Value use_value, HostLocList desired_locations) {
if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
}
const IR::Inst* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
const size_t max_bit_width = LocInfo(current_location).GetMaxBitWidth();
const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location) {
LocInfo(current_location).ReadLock();
return current_location;
}
if (LocInfo(current_location).IsLocked()) {
return UseScratchImpl(use_value, desired_locations);
}
const HostLoc destination_location = SelectARegister(desired_locations);
if (max_bit_width > HostLocBitWidth(destination_location)) {
return UseScratchImpl(use_value, desired_locations);
} else if (CanExchange(destination_location, current_location)) {
Exchange(destination_location, current_location);
} else {
MoveOutOfTheWay(destination_location);
Move(destination_location, current_location);
}
LocInfo(destination_location).ReadLock();
return destination_location;
}
HostLoc RegAlloc::UseScratchImpl(IR::Value use_value, HostLocList desired_locations) {
if (use_value.IsImmediate()) {
return LoadImmediate(use_value, ScratchImpl(desired_locations));
}
const IR::Inst* use_inst = use_value.GetInst();
const HostLoc current_location = *ValueLocation(use_inst);
const size_t bit_width = GetBitWidth(use_inst->GetType());
const bool can_use_current_location = std::find(desired_locations.begin(), desired_locations.end(), current_location) != desired_locations.end();
if (can_use_current_location && !LocInfo(current_location).IsLocked()) {
if (!LocInfo(current_location).IsLastUse()) {
MoveOutOfTheWay(current_location);
}
LocInfo(current_location).WriteLock();
return current_location;
}
const HostLoc destination_location = SelectARegister(desired_locations);
MoveOutOfTheWay(destination_location);
CopyToScratch(bit_width, destination_location, current_location);
LocInfo(destination_location).WriteLock();
return destination_location;
}
HostLoc RegAlloc::ScratchImpl(HostLocList desired_locations) {
HostLoc location = SelectARegister(desired_locations);
MoveOutOfTheWay(location);
LocInfo(location).WriteLock();
return location;
}
void RegAlloc::HostCall(IR::Inst* result_def, boost::optional<Argument&> arg0, boost::optional<Argument&> arg1, boost::optional<Argument&> arg2, boost::optional<Argument&> arg3) {
constexpr size_t args_count = 4;
constexpr std::array<HostLoc, args_count> args_hostloc = { ABI_PARAM1, ABI_PARAM2, ABI_PARAM3, ABI_PARAM4 };
const std::array<boost::optional<Argument&>, args_count> args = { arg0, arg1, arg2, arg3 };
static const std::vector<HostLoc> other_caller_save = [args_hostloc]() {
std::vector<HostLoc> ret(ABI_ALL_CALLER_SAVE.begin(), ABI_ALL_CALLER_SAVE.end());
ret.erase(std::find(ret.begin(), ret.end(), ABI_RETURN));
for (auto hostloc : args_hostloc)
ret.erase(std::find(ret.begin(), ret.end(), hostloc));
return ret;
}();
ScratchGpr({ABI_RETURN});
if (result_def) {
DefineValueImpl(result_def, ABI_RETURN);
}
for (size_t i = 0; i < args_count; i++) {
if (args[i]) {
UseScratch(*args[i], args_hostloc[i]);
#if defined(__llvm__) && !defined(_WIN32)
// LLVM puts the burden of zero-extension of 8 and 16 bit values on the caller instead of the callee
Xbyak::Reg64 reg = HostLocToReg64(args_hostloc[i]);
switch (args[i]->GetType()) {
case IR::Type::U8:
code.movzx(reg.cvt32(), reg.cvt8());
break;
case IR::Type::U16:
code.movzx(reg.cvt32(), reg.cvt16());
break;
default:
break; // Nothing needs to be done
}
#endif
}
}
for (size_t i = 0; i < args_count; i++) {
if (!args[i]) {
// TODO: Force spill
ScratchGpr({args_hostloc[i]});
}
}
for (HostLoc caller_saved : other_caller_save) {
ScratchImpl({caller_saved});
}
}
void RegAlloc::EndOfAllocScope() {
for (auto& iter : hostloc_info) {
iter.ReleaseAll();
}
}
void RegAlloc::AssertNoMoreUses() {
ASSERT(std::all_of(hostloc_info.begin(), hostloc_info.end(), [](const auto& i) { return i.IsEmpty(); }));
}
HostLoc RegAlloc::SelectARegister(HostLocList desired_locations) const {
std::vector<HostLoc> candidates = desired_locations;
// Find all locations that have not been allocated..
auto allocated_locs = std::partition(candidates.begin(), candidates.end(), [this](auto loc){
return !this->LocInfo(loc).IsLocked();
});
candidates.erase(allocated_locs, candidates.end());
ASSERT_MSG(!candidates.empty(), "All candidate registers have already been allocated");
// Selects the best location out of the available locations.
// TODO: Actually do LRU or something. Currently we just try to pick something without a value if possible.
std::partition(candidates.begin(), candidates.end(), [this](auto loc){
return this->LocInfo(loc).IsEmpty();
});
return candidates.front();
}
boost::optional<HostLoc> RegAlloc::ValueLocation(const IR::Inst* value) const {
for (size_t i = 0; i < hostloc_info.size(); i++)
if (hostloc_info[i].ContainsValue(value))
return static_cast<HostLoc>(i);
return boost::none;
}
void RegAlloc::DefineValueImpl(IR::Inst* def_inst, HostLoc host_loc) {
ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
LocInfo(host_loc).AddValue(def_inst);
}
void RegAlloc::DefineValueImpl(IR::Inst* def_inst, const IR::Value& use_inst) {
ASSERT_MSG(!ValueLocation(def_inst), "def_inst has already been defined");
if (use_inst.IsImmediate()) {
HostLoc location = ScratchImpl(any_gpr);
DefineValueImpl(def_inst, location);
LoadImmediate(use_inst, location);
return;
}
ASSERT_MSG(ValueLocation(use_inst.GetInst()), "use_inst must already be defined");
HostLoc location = *ValueLocation(use_inst.GetInst());
DefineValueImpl(def_inst, location);
}
HostLoc RegAlloc::LoadImmediate(IR::Value imm, HostLoc host_loc) {
ASSERT_MSG(imm.IsImmediate(), "imm is not an immediate");
if (HostLocIsGPR(host_loc)) {
const Xbyak::Reg64 reg = HostLocToReg64(host_loc);
const u64 imm_value = imm.GetImmediateAsU64();
if (imm_value == 0)
code.xor_(reg.cvt32(), reg.cvt32());
else
code.mov(reg, imm_value);
return host_loc;
}
if (HostLocIsXMM(host_loc)) {
const Xbyak::Xmm reg = HostLocToXmm(host_loc);
const u64 imm_value = imm.GetImmediateAsU64();
if (imm_value == 0)
MAYBE_AVX(xorps, reg, reg);
else
MAYBE_AVX(movaps, reg, code.MConst(code.xword, imm_value));
return host_loc;
}
UNREACHABLE();
}
void RegAlloc::Move(HostLoc to, HostLoc from) {
const size_t bit_width = LocInfo(from).GetMaxBitWidth();
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsLocked());
ASSERT(bit_width <= HostLocBitWidth(to));
if (LocInfo(from).IsEmpty()) {
return;
}
EmitMove(bit_width, to, from);
LocInfo(to) = std::exchange(LocInfo(from), {});
}
void RegAlloc::CopyToScratch(size_t bit_width, HostLoc to, HostLoc from) {
ASSERT(LocInfo(to).IsEmpty() && !LocInfo(from).IsEmpty());
EmitMove(bit_width, to, from);
}
void RegAlloc::Exchange(HostLoc a, HostLoc b) {
ASSERT(!LocInfo(a).IsLocked() && !LocInfo(b).IsLocked());
ASSERT(LocInfo(a).GetMaxBitWidth() <= HostLocBitWidth(b));
ASSERT(LocInfo(b).GetMaxBitWidth() <= HostLocBitWidth(a));
if (LocInfo(a).IsEmpty()) {
Move(a, b);
return;
}
if (LocInfo(b).IsEmpty()) {
Move(b, a);
return;
}
EmitExchange(a, b);
std::swap(LocInfo(a), LocInfo(b));
}
void RegAlloc::MoveOutOfTheWay(HostLoc reg) {
ASSERT(!LocInfo(reg).IsLocked());
if (!LocInfo(reg).IsEmpty()) {
SpillRegister(reg);
}
}
void RegAlloc::SpillRegister(HostLoc loc) {
ASSERT_MSG(HostLocIsRegister(loc), "Only registers can be spilled");
ASSERT_MSG(!LocInfo(loc).IsEmpty(), "There is no need to spill unoccupied registers");
ASSERT_MSG(!LocInfo(loc).IsLocked(), "Registers that have been allocated must not be spilt");
HostLoc new_loc = FindFreeSpill();
Move(new_loc, loc);
}
HostLoc RegAlloc::FindFreeSpill() const {
for (size_t i = static_cast<size_t>(HostLoc::FirstSpill); i < hostloc_info.size(); i++) {
HostLoc loc = static_cast<HostLoc>(i);
if (LocInfo(loc).IsEmpty())
return loc;
}
ASSERT_MSG(false, "All spill locations are full");
}
HostLocInfo& RegAlloc::LocInfo(HostLoc loc) {
ASSERT(loc != HostLoc::RSP && loc != HostLoc::R15);
return hostloc_info[static_cast<size_t>(loc)];
}
const HostLocInfo& RegAlloc::LocInfo(HostLoc loc) const {
ASSERT(loc != HostLoc::RSP && loc != HostLoc::R15);
return hostloc_info[static_cast<size_t>(loc)];
}
void RegAlloc::EmitMove(size_t bit_width, HostLoc to, HostLoc from) {
if (HostLocIsXMM(to) && HostLocIsXMM(from)) {
MAYBE_AVX(movaps, HostLocToXmm(to), HostLocToXmm(from));
} else if (HostLocIsGPR(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.mov(HostLocToReg64(to), HostLocToReg64(from));
} else {
code.mov(HostLocToReg64(to).cvt32(), HostLocToReg64(from).cvt32());
}
} else if (HostLocIsXMM(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
MAYBE_AVX(movq, HostLocToXmm(to), HostLocToReg64(from));
} else {
MAYBE_AVX(movd, HostLocToXmm(to), HostLocToReg64(from).cvt32());
}
} else if (HostLocIsGPR(to) && HostLocIsXMM(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
MAYBE_AVX(movq, HostLocToReg64(to), HostLocToXmm(from));
} else {
MAYBE_AVX(movd, HostLocToReg64(to).cvt32(), HostLocToXmm(from));
}
} else if (HostLocIsXMM(to) && HostLocIsSpill(from)) {
Xbyak::Address spill_addr = spill_to_addr(from);
ASSERT(spill_addr.getBit() >= bit_width);
switch (bit_width) {
case 128:
MAYBE_AVX(movaps, HostLocToXmm(to), spill_addr);
break;
case 64:
MAYBE_AVX(movsd, HostLocToXmm(to), spill_addr);
break;
case 32:
case 16:
case 8:
MAYBE_AVX(movss, HostLocToXmm(to), spill_addr);
break;
default:
UNREACHABLE();
}
} else if (HostLocIsSpill(to) && HostLocIsXMM(from)) {
Xbyak::Address spill_addr = spill_to_addr(to);
ASSERT(spill_addr.getBit() >= bit_width);
switch (bit_width) {
case 128:
MAYBE_AVX(movaps, spill_addr, HostLocToXmm(from));
break;
case 64:
MAYBE_AVX(movsd, spill_addr, HostLocToXmm(from));
break;
case 32:
case 16:
case 8:
MAYBE_AVX(movss, spill_addr, HostLocToXmm(from));
break;
default:
UNREACHABLE();
}
} else if (HostLocIsGPR(to) && HostLocIsSpill(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.mov(HostLocToReg64(to), spill_to_addr(from));
} else {
code.mov(HostLocToReg64(to).cvt32(), spill_to_addr(from));
}
} else if (HostLocIsSpill(to) && HostLocIsGPR(from)) {
ASSERT(bit_width != 128);
if (bit_width == 64) {
code.mov(spill_to_addr(to), HostLocToReg64(from));
} else {
code.mov(spill_to_addr(to), HostLocToReg64(from).cvt32());
}
} else {
ASSERT_MSG(false, "Invalid RegAlloc::EmitMove");
}
}
void RegAlloc::EmitExchange(HostLoc a, HostLoc b) {
if (HostLocIsGPR(a) && HostLocIsGPR(b)) {
code.xchg(HostLocToReg64(a), HostLocToReg64(b));
} else if (HostLocIsXMM(a) && HostLocIsXMM(b)) {
ASSERT_MSG(false, "Check your code: Exchanging XMM registers is unnecessary");
} else {
ASSERT_MSG(false, "Invalid RegAlloc::EmitExchange");
}
}
} // namespace Dynarmic::BackendX64