dynarmic/src/backend/x64/a32_emit_x64.cpp

1632 lines
59 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2016 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <algorithm>
#include <optional>
#include <utility>
#include <fmt/format.h>
#include <fmt/ostream.h>
#include <mp/traits/integer_of_size.h>
#include <dynarmic/A32/coprocessor.h>
#include <dynarmic/exclusive_monitor.h>
#include "backend/x64/a32_emit_x64.h"
#include "backend/x64/a32_jitstate.h"
#include "backend/x64/abi.h"
#include "backend/x64/block_of_code.h"
#include "backend/x64/devirtualize.h"
#include "backend/x64/emit_x64.h"
#include "backend/x64/nzcv_util.h"
#include "backend/x64/perf_map.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_types.h"
#include "common/scope_exit.h"
#include "common/variant_util.h"
#include "frontend/A32/location_descriptor.h"
#include "frontend/A32/types.h"
#include "frontend/ir/basic_block.h"
#include "frontend/ir/microinstruction.h"
#include "frontend/ir/opcodes.h"
// TODO: Have ARM flags in host flags and not have them use up GPR registers unless necessary.
// TODO: Actually implement that proper instruction selector you've always wanted to sweetheart.
namespace Dynarmic::Backend::X64 {
using namespace Xbyak::util;
static Xbyak::Address MJitStateReg(A32::Reg reg) {
return dword[r15 + offsetof(A32JitState, Reg) + sizeof(u32) * static_cast<size_t>(reg)];
}
static Xbyak::Address MJitStateExtReg(A32::ExtReg reg) {
if (A32::IsSingleExtReg(reg)) {
const size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::S0);
return dword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u32) * index];
}
if (A32::IsDoubleExtReg(reg)) {
const size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::D0);
return qword[r15 + offsetof(A32JitState, ExtReg) + sizeof(u64) * index];
}
if (A32::IsQuadExtReg(reg)) {
const size_t index = static_cast<size_t>(reg) - static_cast<size_t>(A32::ExtReg::Q0);
return xword[r15 + offsetof(A32JitState, ExtReg) + 2 * sizeof(u64) * index];
}
ASSERT_FALSE("Should never happen.");
}
A32EmitContext::A32EmitContext(const A32::UserConfig& conf, RegAlloc& reg_alloc, IR::Block& block)
: EmitContext(reg_alloc, block), conf(conf) {}
A32::LocationDescriptor A32EmitContext::Location() const {
return A32::LocationDescriptor{block.Location()};
}
bool A32EmitContext::IsSingleStep() const {
return Location().SingleStepping();
}
FP::FPCR A32EmitContext::FPCR(bool fpcr_controlled) const {
const FP::FPCR fpcr = FP::FPCR{Location().FPSCR().Value()};
return fpcr_controlled ? fpcr : fpcr.ASIMDStandardValue();
}
A32EmitX64::A32EmitX64(BlockOfCode& code, A32::UserConfig conf, A32::Jit* jit_interface)
: EmitX64(code), conf(std::move(conf)), jit_interface(jit_interface) {
GenFastmemFallbacks();
GenTerminalHandlers();
code.PreludeComplete();
ClearFastDispatchTable();
exception_handler.SetFastmemCallback([this](u64 rip_){
return FastmemCallback(rip_);
});
}
A32EmitX64::~A32EmitX64() = default;
A32EmitX64::BlockDescriptor A32EmitX64::Emit(IR::Block& block) {
code.EnableWriting();
SCOPE_EXIT { code.DisableWriting(); };
static const std::vector<HostLoc> gpr_order = [this]{
std::vector<HostLoc> gprs{any_gpr};
if (conf.page_table) {
gprs.erase(std::find(gprs.begin(), gprs.end(), HostLoc::R14));
}
if (conf.fastmem_pointer) {
gprs.erase(std::find(gprs.begin(), gprs.end(), HostLoc::R13));
}
return gprs;
}();
RegAlloc reg_alloc{code, A32JitState::SpillCount, SpillToOpArg<A32JitState>, gpr_order, any_xmm};
A32EmitContext ctx{conf, reg_alloc, block};
// Start emitting.
code.align();
const u8* const entrypoint = code.getCurr();
EmitCondPrelude(ctx);
for (auto iter = block.begin(); iter != block.end(); ++iter) {
IR::Inst* inst = &*iter;
// Call the relevant Emit* member function.
switch (inst->GetOpcode()) {
#define OPCODE(name, type, ...) \
case IR::Opcode::name: \
A32EmitX64::Emit##name(ctx, inst); \
break;
#define A32OPC(name, type, ...) \
case IR::Opcode::A32##name: \
A32EmitX64::EmitA32##name(ctx, inst); \
break;
#define A64OPC(...)
#include "frontend/ir/opcodes.inc"
#undef OPCODE
#undef A32OPC
#undef A64OPC
default:
ASSERT_FALSE("Invalid opcode: {}", inst->GetOpcode());
break;
}
reg_alloc.EndOfAllocScope();
}
reg_alloc.AssertNoMoreUses();
EmitAddCycles(block.CycleCount());
EmitX64::EmitTerminal(block.GetTerminal(), ctx.Location().SetSingleStepping(false), ctx.IsSingleStep());
code.int3();
const size_t size = static_cast<size_t>(code.getCurr() - entrypoint);
const A32::LocationDescriptor descriptor{block.Location()};
const A32::LocationDescriptor end_location{block.EndLocation()};
const auto range = boost::icl::discrete_interval<u32>::closed(descriptor.PC(), end_location.PC() - 1);
block_ranges.AddRange(range, descriptor);
return RegisterBlock(descriptor, entrypoint, size);
}
void A32EmitX64::ClearCache() {
EmitX64::ClearCache();
block_ranges.ClearCache();
ClearFastDispatchTable();
fastmem_patch_info.clear();
}
void A32EmitX64::InvalidateCacheRanges(const boost::icl::interval_set<u32>& ranges) {
InvalidateBasicBlocks(block_ranges.InvalidateRanges(ranges));
}
void A32EmitX64::EmitCondPrelude(const A32EmitContext& ctx) {
if (ctx.block.GetCondition() == IR::Cond::AL) {
ASSERT(!ctx.block.HasConditionFailedLocation());
return;
}
ASSERT(ctx.block.HasConditionFailedLocation());
Xbyak::Label pass = EmitCond(ctx.block.GetCondition());
EmitAddCycles(ctx.block.ConditionFailedCycleCount());
EmitTerminal(IR::Term::LinkBlock{ctx.block.ConditionFailedLocation()}, ctx.Location().SetSingleStepping(false), ctx.IsSingleStep());
code.L(pass);
}
void A32EmitX64::ClearFastDispatchTable() {
if (conf.enable_fast_dispatch) {
fast_dispatch_table.fill({});
}
}
void A32EmitX64::GenFastmemFallbacks() {
const std::initializer_list<int> idxes{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14};
const std::array<std::pair<size_t, ArgCallback>, 4> read_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryRead8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryRead16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryRead32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryRead64>(conf.callbacks)},
}};
const std::array<std::pair<size_t, ArgCallback>, 4> write_callbacks{{
{8, Devirtualize<&A32::UserCallbacks::MemoryWrite8>(conf.callbacks)},
{16, Devirtualize<&A32::UserCallbacks::MemoryWrite16>(conf.callbacks)},
{32, Devirtualize<&A32::UserCallbacks::MemoryWrite32>(conf.callbacks)},
{64, Devirtualize<&A32::UserCallbacks::MemoryWrite64>(conf.callbacks)},
}};
for (int vaddr_idx : idxes) {
for (int value_idx : idxes) {
for (const auto& [bitsize, callback] : read_callbacks) {
code.align();
read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void(*)()>();
ABI_PushCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
callback.EmitCall(code);
if (value_idx != code.ABI_RETURN.getIdx()) {
code.mov(Xbyak::Reg64{value_idx}, code.ABI_RETURN);
}
ABI_PopCallerSaveRegistersAndAdjustStackExcept(code, HostLocRegIdx(value_idx));
code.ret();
PerfMapRegister(read_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_read_fallback_{}", bitsize));
}
for (const auto& [bitsize, callback] : write_callbacks) {
code.align();
write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)] = code.getCurr<void(*)()>();
ABI_PushCallerSaveRegistersAndAdjustStack(code);
if (vaddr_idx == code.ABI_PARAM3.getIdx() && value_idx == code.ABI_PARAM2.getIdx()) {
code.xchg(code.ABI_PARAM2, code.ABI_PARAM3);
} else if (vaddr_idx == code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
} else {
if (value_idx != code.ABI_PARAM3.getIdx()) {
code.mov(code.ABI_PARAM3, Xbyak::Reg64{value_idx});
}
if (vaddr_idx != code.ABI_PARAM2.getIdx()) {
code.mov(code.ABI_PARAM2, Xbyak::Reg64{vaddr_idx});
}
}
callback.EmitCall(code);
ABI_PopCallerSaveRegistersAndAdjustStack(code);
code.ret();
PerfMapRegister(write_fallbacks[std::make_tuple(bitsize, vaddr_idx, value_idx)], code.getCurr(), fmt::format("a32_write_fallback_{}", bitsize));
}
}
}
}
void A32EmitX64::GenTerminalHandlers() {
// PC ends up in ebp, location_descriptor ends up in rbx
const auto calculate_location_descriptor = [this] {
// This calculation has to match up with IREmitter::PushRSB
code.mov(ebx, dword[r15 + offsetof(A32JitState, upper_location_descriptor)]);
code.shl(rbx, 32);
code.mov(ecx, MJitStateReg(A32::Reg::PC));
code.mov(ebp, ecx);
code.or_(rbx, rcx);
};
Xbyak::Label fast_dispatch_cache_miss, rsb_cache_miss;
code.align();
terminal_handler_pop_rsb_hint = code.getCurr<const void*>();
calculate_location_descriptor();
code.mov(eax, dword[r15 + offsetof(A32JitState, rsb_ptr)]);
code.sub(eax, 1);
code.and_(eax, u32(A32JitState::RSBPtrMask));
code.mov(dword[r15 + offsetof(A32JitState, rsb_ptr)], eax);
code.cmp(rbx, qword[r15 + offsetof(A32JitState, rsb_location_descriptors) + rax * sizeof(u64)]);
if (conf.enable_fast_dispatch) {
code.jne(rsb_cache_miss);
} else {
code.jne(code.GetReturnFromRunCodeAddress());
}
code.mov(rax, qword[r15 + offsetof(A32JitState, rsb_codeptrs) + rax * sizeof(u64)]);
code.jmp(rax);
PerfMapRegister(terminal_handler_pop_rsb_hint, code.getCurr(), "a32_terminal_handler_pop_rsb_hint");
if (conf.enable_fast_dispatch) {
code.align();
terminal_handler_fast_dispatch_hint = code.getCurr<const void*>();
calculate_location_descriptor();
code.L(rsb_cache_miss);
code.mov(r12, reinterpret_cast<u64>(fast_dispatch_table.data()));
if (code.HasSSE42()) {
code.crc32(ebp, r12d);
}
code.and_(ebp, fast_dispatch_table_mask);
code.lea(rbp, ptr[r12 + rbp]);
code.cmp(rbx, qword[rbp + offsetof(FastDispatchEntry, location_descriptor)]);
code.jne(fast_dispatch_cache_miss);
code.jmp(ptr[rbp + offsetof(FastDispatchEntry, code_ptr)]);
code.L(fast_dispatch_cache_miss);
code.mov(qword[rbp + offsetof(FastDispatchEntry, location_descriptor)], rbx);
code.LookupBlock();
code.mov(ptr[rbp + offsetof(FastDispatchEntry, code_ptr)], rax);
code.jmp(rax);
PerfMapRegister(terminal_handler_fast_dispatch_hint, code.getCurr(), "a32_terminal_handler_fast_dispatch_hint");
code.align();
fast_dispatch_table_lookup = code.getCurr<FastDispatchEntry&(*)(u64)>();
code.mov(code.ABI_PARAM2, reinterpret_cast<u64>(fast_dispatch_table.data()));
if (code.HasSSE42()) {
code.crc32(code.ABI_PARAM1.cvt32(), code.ABI_PARAM2.cvt32());
}
code.and_(code.ABI_PARAM1.cvt32(), fast_dispatch_table_mask);
code.lea(code.ABI_RETURN, code.ptr[code.ABI_PARAM1 + code.ABI_PARAM2]);
code.ret();
}
}
void A32EmitX64::EmitA32SetCheckBit(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg8 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt8();
code.mov(code.byte[r15 + offsetof(A32JitState, check_bit)], to_store);
}
void A32EmitX64::EmitA32GetRegister(A32EmitContext& ctx, IR::Inst* inst) {
const A32::Reg reg = inst->GetArg(0).GetA32RegRef();
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, MJitStateReg(reg));
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32GetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) {
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsSingleExtReg(reg));
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.movss(result, MJitStateExtReg(reg));
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32GetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) {
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsDoubleExtReg(reg));
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.movsd(result, MJitStateExtReg(reg));
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32GetVector(A32EmitContext& ctx, IR::Inst* inst) {
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsDoubleExtReg(reg) || A32::IsQuadExtReg(reg));
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
if (A32::IsDoubleExtReg(reg)) {
code.movsd(result, MJitStateExtReg(reg));
} else {
code.movaps(result, MJitStateExtReg(reg));
}
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32SetRegister(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const A32::Reg reg = inst->GetArg(0).GetA32RegRef();
if (args[1].IsImmediate()) {
code.mov(MJitStateReg(reg), args[1].GetImmediateU32());
} else if (args[1].IsInXmm()) {
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
code.movd(MJitStateReg(reg), to_store);
} else {
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32();
code.mov(MJitStateReg(reg), to_store);
}
}
void A32EmitX64::EmitA32SetExtendedRegister32(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsSingleExtReg(reg));
if (args[1].IsInXmm()) {
Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
code.movss(MJitStateExtReg(reg), to_store);
} else {
Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[1]).cvt32();
code.mov(MJitStateExtReg(reg), to_store);
}
}
void A32EmitX64::EmitA32SetExtendedRegister64(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsDoubleExtReg(reg));
if (args[1].IsInXmm()) {
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
code.movsd(MJitStateExtReg(reg), to_store);
} else {
const Xbyak::Reg64 to_store = ctx.reg_alloc.UseGpr(args[1]);
code.mov(MJitStateExtReg(reg), to_store);
}
}
void A32EmitX64::EmitA32SetVector(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const A32::ExtReg reg = inst->GetArg(0).GetA32ExtRegRef();
ASSERT(A32::IsDoubleExtReg(reg) || A32::IsQuadExtReg(reg));
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[1]);
if (A32::IsDoubleExtReg(reg)) {
code.movsd(MJitStateExtReg(reg), to_store);
} else {
code.movaps(MJitStateExtReg(reg), to_store);
}
}
void A32EmitX64::EmitA32GetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg32 tmp2 = ctx.reg_alloc.ScratchGpr().cvt32();
if (code.HasFastBMI2()) {
// Here we observe that cpsr_et and cpsr_ge are right next to each other in memory,
// so we load them both at the same time with one 64-bit read. This allows us to
// extract all of their bits together at once with one pext.
static_assert(offsetof(A32JitState, upper_location_descriptor) + 4 == offsetof(A32JitState, cpsr_ge));
code.mov(result.cvt64(), qword[r15 + offsetof(A32JitState, upper_location_descriptor)]);
code.mov(tmp.cvt64(), 0x80808080'00000003ull);
code.pext(result.cvt64(), result.cvt64(), tmp.cvt64());
code.mov(tmp, 0x000f0220);
code.pdep(result, result, tmp);
} else {
code.mov(result, dword[r15 + offsetof(A32JitState, upper_location_descriptor)]);
code.imul(result, result, 0x12);
code.and_(result, 0x00000220);
code.mov(tmp, dword[r15 + offsetof(A32JitState, cpsr_ge)]);
code.and_(tmp, 0x80808080);
code.imul(tmp, tmp, 0x00204081);
code.shr(tmp, 12);
code.and_(tmp, 0x000f0000);
code.or_(result, tmp);
}
code.mov(tmp, dword[r15 + offsetof(A32JitState, cpsr_q)]);
code.shl(tmp, 27);
code.or_(result, tmp);
code.mov(tmp2, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
if (code.HasFastBMI2()) {
code.mov(tmp, NZCV::x64_mask);
code.pext(tmp2, tmp2, tmp);
code.shl(tmp2, 28);
} else {
code.and_(tmp2, NZCV::x64_mask);
code.imul(tmp2, tmp2, NZCV::from_x64_multiplier);
code.and_(tmp2, NZCV::arm_mask);
}
code.or_(result, tmp2);
code.or_(result, dword[r15 + offsetof(A32JitState, cpsr_jaifm)]);
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32SetCpsr(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const Xbyak::Reg32 cpsr = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg32 tmp2 = ctx.reg_alloc.ScratchGpr().cvt32();
if (conf.always_little_endian) {
code.and_(cpsr, 0xFFFFFDFF);
}
// cpsr_q
code.bt(cpsr, 27);
code.setc(code.byte[r15 + offsetof(A32JitState, cpsr_q)]);
// cpsr_nzcv
code.mov(tmp, cpsr);
code.shr(tmp, 28);
if (code.HasFastBMI2()) {
code.mov(tmp2, NZCV::x64_mask);
code.pdep(tmp, tmp, tmp2);
} else {
code.imul(tmp, tmp, NZCV::to_x64_multiplier);
code.and_(tmp, NZCV::x64_mask);
}
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], tmp);
// cpsr_jaifm
code.mov(tmp, cpsr);
code.and_(tmp, 0x07F0FDDF);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_jaifm)], tmp);
if (code.HasFastBMI2()) {
// cpsr_et and cpsr_ge
static_assert(offsetof(A32JitState, upper_location_descriptor) + 4 == offsetof(A32JitState, cpsr_ge));
// This mask is 0x7FFF0000, because we do not want the MSB to be sign extended to the upper dword.
static_assert((A32::LocationDescriptor::FPSCR_MODE_MASK & ~0x7FFF0000) == 0);
code.and_(qword[r15 + offsetof(A32JitState, upper_location_descriptor)], u32(0x7FFF0000));
code.mov(tmp, 0x000f0220);
code.pext(cpsr, cpsr, tmp);
code.mov(tmp.cvt64(), 0x01010101'00000003ull);
code.pdep(cpsr.cvt64(), cpsr.cvt64(), tmp.cvt64());
// We perform SWAR partitioned subtraction here, to negate the GE bytes.
code.mov(tmp.cvt64(), 0x80808080'00000003ull);
code.mov(tmp2.cvt64(), tmp.cvt64());
code.sub(tmp.cvt64(), cpsr.cvt64());
code.xor_(tmp.cvt64(), tmp2.cvt64());
code.or_(qword[r15 + offsetof(A32JitState, upper_location_descriptor)], tmp.cvt64());
} else {
code.and_(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], u32(0xFFFF0000));
code.mov(tmp, cpsr);
code.and_(tmp, 0x00000220);
code.imul(tmp, tmp, 0x00900000);
code.shr(tmp, 28);
code.or_(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], tmp);
code.and_(cpsr, 0x000f0000);
code.shr(cpsr, 16);
code.imul(cpsr, cpsr, 0x00204081);
code.and_(cpsr, 0x01010101);
code.mov(tmp, 0x80808080);
code.sub(tmp, cpsr);
code.xor_(tmp, 0x80808080);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], tmp);
}
}
void A32EmitX64::EmitA32SetCpsrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
const u32 imm = args[0].GetImmediateU32();
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], NZCV::ToX64(imm));
} else if (code.HasFastBMI2()) {
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
const Xbyak::Reg32 b = ctx.reg_alloc.ScratchGpr().cvt32();
code.shr(a, 28);
code.mov(b, NZCV::x64_mask);
code.pdep(a, a, b);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], a);
} else {
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shr(a, 28);
code.imul(a, a, NZCV::to_x64_multiplier);
code.and_(a, NZCV::x64_mask);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], a);
}
}
void A32EmitX64::EmitA32SetCpsrNZCVQ(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
const u32 imm = args[0].GetImmediateU32();
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], NZCV::ToX64(imm));
code.mov(code.byte[r15 + offsetof(A32JitState, cpsr_q)], u8((imm & 0x08000000) != 0 ? 1 : 0));
} else if (code.HasFastBMI2()) {
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
const Xbyak::Reg32 b = ctx.reg_alloc.ScratchGpr().cvt32();
code.shr(a, 28);
code.setc(code.byte[r15 + offsetof(A32JitState, cpsr_q)]);
code.mov(b, NZCV::x64_mask);
code.pdep(a, a, b);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], a);
} else {
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shr(a, 28);
code.setc(code.byte[r15 + offsetof(A32JitState, cpsr_q)]);
code.imul(a, a, NZCV::to_x64_multiplier);
code.and_(a, NZCV::x64_mask);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], a);
}
}
static void EmitGetFlag(BlockOfCode& code, A32EmitContext& ctx, IR::Inst* inst, size_t flag_bit) {
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, cpsr_nzcv)]);
if (flag_bit != 0) {
code.shr(result, static_cast<int>(flag_bit));
}
code.and_(result, 1);
ctx.reg_alloc.DefineValue(inst, result);
}
static void EmitSetFlag(BlockOfCode& code, A32EmitContext& ctx, IR::Inst* inst, size_t flag_bit) {
const u32 flag_mask = 1u << flag_bit;
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], flag_mask);
} else {
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
}
} else {
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
if (flag_bit != 0) {
code.shl(to_store, static_cast<int>(flag_bit));
code.and_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], ~flag_mask);
code.or_(dword[r15 + offsetof(A32JitState, cpsr_nzcv)], to_store);
} else {
code.mov(code.byte[r15 + offsetof(A32JitState, cpsr_nzcv)], to_store.cvt8());
}
}
}
void A32EmitX64::EmitA32GetNFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitGetFlag(code, ctx, inst, NZCV::x64_n_flag_bit);
}
void A32EmitX64::EmitA32SetNFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitSetFlag(code, ctx, inst, NZCV::x64_n_flag_bit);
}
void A32EmitX64::EmitA32GetZFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitGetFlag(code, ctx, inst, NZCV::x64_z_flag_bit);
}
void A32EmitX64::EmitA32SetZFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitSetFlag(code, ctx, inst, NZCV::x64_z_flag_bit);
}
void A32EmitX64::EmitA32GetCFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitGetFlag(code, ctx, inst, NZCV::x64_c_flag_bit);
}
void A32EmitX64::EmitA32SetCFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitSetFlag(code, ctx, inst, NZCV::x64_c_flag_bit);
}
void A32EmitX64::EmitA32GetVFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitGetFlag(code, ctx, inst, NZCV::x64_v_flag_bit);
}
void A32EmitX64::EmitA32SetVFlag(A32EmitContext& ctx, IR::Inst* inst) {
EmitSetFlag(code, ctx, inst, NZCV::x64_v_flag_bit);
}
void A32EmitX64::EmitA32OrQFlag(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
if (args[0].GetImmediateU1()) {
code.mov(dword[r15 + offsetof(A32JitState, cpsr_q)], 1);
}
} else {
const Xbyak::Reg8 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt8();
code.or_(code.byte[r15 + offsetof(A32JitState, cpsr_q)], to_store);
}
}
void A32EmitX64::EmitA32GetGEFlags(A32EmitContext& ctx, IR::Inst* inst) {
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
code.movd(result, dword[r15 + offsetof(A32JitState, cpsr_ge)]);
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32SetGEFlags(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ASSERT(!args[0].IsImmediate());
if (args[0].IsInXmm()) {
const Xbyak::Xmm to_store = ctx.reg_alloc.UseXmm(args[0]);
code.movd(dword[r15 + offsetof(A32JitState, cpsr_ge)], to_store);
} else {
const Xbyak::Reg32 to_store = ctx.reg_alloc.UseGpr(args[0]).cvt32();
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], to_store);
}
}
void A32EmitX64::EmitA32SetGEFlagsCompressed(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (args[0].IsImmediate()) {
const u32 imm = args[0].GetImmediateU32();
u32 ge = 0;
ge |= Common::Bit<19>(imm) ? 0xFF000000 : 0;
ge |= Common::Bit<18>(imm) ? 0x00FF0000 : 0;
ge |= Common::Bit<17>(imm) ? 0x0000FF00 : 0;
ge |= Common::Bit<16>(imm) ? 0x000000FF : 0;
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], ge);
} else if (code.HasFastBMI2()) {
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
const Xbyak::Reg32 b = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(b, 0x01010101);
code.shr(a, 16);
code.pdep(a, a, b);
code.imul(a, a, 0xFF);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], a);
} else {
const Xbyak::Reg32 a = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.shr(a, 16);
code.and_(a, 0xF);
code.imul(a, a, 0x00204081);
code.and_(a, 0x01010101);
code.imul(a, a, 0xFF);
code.mov(dword[r15 + offsetof(A32JitState, cpsr_ge)], a);
}
}
void A32EmitX64::EmitA32DataSynchronizationBarrier(A32EmitContext&, IR::Inst*) {
code.mfence();
}
void A32EmitX64::EmitA32DataMemoryBarrier(A32EmitContext&, IR::Inst*) {
code.lfence();
}
void A32EmitX64::EmitA32InstructionSynchronizationBarrier(A32EmitContext& ctx, IR::Inst*) {
ctx.reg_alloc.HostCall(nullptr);
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(jit_interface));
code.CallLambda([](A32::Jit* jit) { jit->ClearCache(); });
}
void A32EmitX64::EmitA32BXWritePC(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
auto& arg = args[0];
const u32 upper_without_t = (ctx.Location().SetSingleStepping(false).UniqueHash() >> 32) & 0xFFFFFFFE;
// Pseudocode:
// if (new_pc & 1) {
// new_pc &= 0xFFFFFFFE;
// cpsr.T = true;
// } else {
// new_pc &= 0xFFFFFFFC;
// cpsr.T = false;
// }
// We rely on the fact we disallow EFlag from changing within a block.
if (arg.IsImmediate()) {
const u32 new_pc = arg.GetImmediateU32();
const u32 mask = Common::Bit<0>(new_pc) ? 0xFFFFFFFE : 0xFFFFFFFC;
const u32 new_upper = upper_without_t | (Common::Bit<0>(new_pc) ? 1 : 0);
code.mov(MJitStateReg(A32::Reg::PC), new_pc & mask);
code.mov(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], new_upper);
} else {
const Xbyak::Reg32 new_pc = ctx.reg_alloc.UseScratchGpr(arg).cvt32();
const Xbyak::Reg32 mask = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg32 new_upper = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(mask, new_pc);
code.and_(mask, 1);
code.lea(new_upper, ptr[mask.cvt64() + upper_without_t]);
code.lea(mask, ptr[mask.cvt64() + mask.cvt64() * 1 - 4]); // mask = pc & 1 ? 0xFFFFFFFE : 0xFFFFFFFC
code.and_(new_pc, mask);
code.mov(MJitStateReg(A32::Reg::PC), new_pc);
code.mov(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], new_upper);
}
}
void A32EmitX64::EmitA32CallSupervisor(A32EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(nullptr);
code.SwitchMxcsrOnExit();
code.mov(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_to_run)]);
code.sub(code.ABI_PARAM2, qword[r15 + offsetof(A32JitState, cycles_remaining)]);
Devirtualize<&A32::UserCallbacks::AddTicks>(conf.callbacks).EmitCall(code);
ctx.reg_alloc.EndOfAllocScope();
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(nullptr, {}, args[0]);
Devirtualize<&A32::UserCallbacks::CallSVC>(conf.callbacks).EmitCall(code);
Devirtualize<&A32::UserCallbacks::GetTicksRemaining>(conf.callbacks).EmitCall(code);
code.mov(qword[r15 + offsetof(A32JitState, cycles_to_run)], code.ABI_RETURN);
code.mov(qword[r15 + offsetof(A32JitState, cycles_remaining)], code.ABI_RETURN);
code.SwitchMxcsrOnEntry();
}
void A32EmitX64::EmitA32ExceptionRaised(A32EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ASSERT(args[0].IsImmediate() && args[1].IsImmediate());
const u32 pc = args[0].GetImmediateU32();
const u64 exception = args[1].GetImmediateU64();
Devirtualize<&A32::UserCallbacks::ExceptionRaised>(conf.callbacks).EmitCall(code, [&](RegList param) {
code.mov(param[0], pc);
code.mov(param[1], exception);
});
}
static u32 GetFpscrImpl(A32JitState* jit_state) {
return jit_state->Fpscr();
}
void A32EmitX64::EmitA32GetFpscr(A32EmitContext& ctx, IR::Inst* inst) {
ctx.reg_alloc.HostCall(inst);
code.mov(code.ABI_PARAM1, code.r15);
code.stmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]);
code.CallFunction(&GetFpscrImpl);
}
static void SetFpscrImpl(u32 value, A32JitState* jit_state) {
jit_state->SetFpscr(value);
}
void A32EmitX64::EmitA32SetFpscr(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(nullptr, args[0]);
code.mov(code.ABI_PARAM2, code.r15);
code.CallFunction(&SetFpscrImpl);
code.ldmxcsr(code.dword[code.r15 + offsetof(A32JitState, guest_MXCSR)]);
}
void A32EmitX64::EmitA32GetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
const Xbyak::Reg32 result = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(result, dword[r15 + offsetof(A32JitState, fpsr_nzcv)]);
ctx.reg_alloc.DefineValue(inst, result);
}
void A32EmitX64::EmitA32SetFpscrNZCV(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (code.HasFastBMI2()) {
const Xbyak::Reg32 value = ctx.reg_alloc.UseGpr(args[0]).cvt32();
const Xbyak::Reg32 tmp = ctx.reg_alloc.ScratchGpr().cvt32();
code.mov(tmp, NZCV::x64_mask);
code.pext(tmp, value, tmp);
code.shl(tmp, 28);
code.mov(dword[r15 + offsetof(A32JitState, fpsr_nzcv)], tmp);
return;
}
const Xbyak::Reg32 value = ctx.reg_alloc.UseScratchGpr(args[0]).cvt32();
code.and_(value, NZCV::x64_mask);
code.imul(value, value, NZCV::from_x64_multiplier);
code.and_(value, NZCV::arm_mask);
code.mov(dword[r15 + offsetof(A32JitState, fpsr_nzcv)], value);
}
void A32EmitX64::EmitA32ClearExclusive(A32EmitContext&, IR::Inst*) {
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
}
std::optional<A32EmitX64::DoNotFastmemMarker> A32EmitX64::ShouldFastmem(A32EmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall A32EmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
ASSERT(iter != fastmem_patch_info.end());
if (conf.recompile_on_fastmem_failure) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
FakeCall ret;
ret.call_rip = iter->second.callback;
ret.ret_rip = iter->second.resume_rip;
return ret;
}
namespace {
constexpr size_t page_bits = 12;
constexpr size_t page_size = 1 << page_bits;
constexpr size_t page_mask = (1 << page_bits) - 1;
void EmitDetectMisaignedVAddr(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg32 vaddr, Xbyak::Reg32 tmp) {
if (bitsize == 8 || (ctx.conf.detect_misaligned_access_via_page_table & bitsize) == 0) {
return;
}
const u32 align_mask = [bitsize]() -> u32 {
switch (bitsize) {
case 16:
return 0b1;
case 32:
return 0b11;
case 64:
return 0b111;
}
UNREACHABLE();
}();
code.test(vaddr, align_mask);
if (!ctx.conf.only_detect_misalignment_via_page_table_on_page_boundary) {
code.jnz(abort, code.T_NEAR);
return;
}
const u32 page_align_mask = static_cast<u32>(page_size - 1) & ~align_mask;
Xbyak::Label detect_boundary, resume;
code.jnz(detect_boundary, code.T_NEAR);
code.L(resume);
code.SwitchToFarCode();
code.L(detect_boundary);
code.mov(tmp, vaddr);
code.and_(tmp, page_align_mask);
code.cmp(tmp, page_align_mask);
code.jne(resume, code.T_NEAR);
// NOTE: We expect to fallthrough into abort code here.
code.SwitchToNearCode();
}
Xbyak::RegExp EmitVAddrLookup(BlockOfCode& code, A32EmitContext& ctx, size_t bitsize, Xbyak::Label& abort, Xbyak::Reg64 vaddr) {
const Xbyak::Reg64 page = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg32 tmp = ctx.conf.absolute_offset_page_table ? page.cvt32() : ctx.reg_alloc.ScratchGpr().cvt32();
EmitDetectMisaignedVAddr(code, ctx, bitsize, abort, vaddr.cvt32(), tmp);
// TODO: This code assumes vaddr has been zext from 32-bits to 64-bits.
code.mov(tmp, vaddr.cvt32());
code.shr(tmp, static_cast<int>(page_bits));
code.mov(page, qword[r14 + tmp.cvt64() * sizeof(void*)]);
code.test(page, page);
code.jz(abort, code.T_NEAR);
if (ctx.conf.absolute_offset_page_table) {
return page + vaddr;
}
code.mov(tmp, vaddr.cvt32());
code.and_(tmp, static_cast<u32>(page_mask));
return page + tmp.cvt64();
}
template<std::size_t bitsize>
void EmitReadMemoryMov(BlockOfCode& code, const Xbyak::Reg64& value, const Xbyak::RegExp& addr) {
switch (bitsize) {
case 8:
code.movzx(value.cvt32(), code.byte[addr]);
return;
case 16:
code.movzx(value.cvt32(), word[addr]);
return;
case 32:
code.mov(value.cvt32(), dword[addr]);
return;
case 64:
code.mov(value, qword[addr]);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
template<std::size_t bitsize>
void EmitWriteMemoryMov(BlockOfCode& code, const Xbyak::RegExp& addr, const Xbyak::Reg64& value) {
switch (bitsize) {
case 8:
code.mov(code.byte[addr], value.cvt8());
return;
case 16:
code.mov(word[addr], value.cvt16());
return;
case 32:
code.mov(dword[addr], value.cvt32());
return;
case 64:
code.mov(qword[addr], value);
return;
default:
ASSERT_FALSE("Invalid bitsize");
}
}
} // anonymous namespace
template<std::size_t bitsize, auto callback>
void A32EmitX64::ReadMemory(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (!conf.page_table) {
ctx.reg_alloc.HostCall(inst, {}, args[0]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (const auto marker = ShouldFastmem(ctx, inst)) {
const auto location = code.getCurr();
EmitReadMemoryMov<bitsize>(code, value, r13 + vaddr);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*marker,
}
);
ctx.reg_alloc.DefineValue(inst, value);
return;
}
Xbyak::Label abort, end;
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitReadMemoryMov<bitsize>(code, value, src_ptr);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
ctx.reg_alloc.DefineValue(inst, value);
}
template<std::size_t bitsize, auto callback>
void A32EmitX64::WriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
if (!conf.page_table) {
ctx.reg_alloc.HostCall(nullptr, {}, args[0], args[1]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
return;
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[0]);
const Xbyak::Reg64 value = ctx.reg_alloc.UseGpr(args[1]);
const auto wrapped_fn = write_fallbacks[std::make_tuple(bitsize, vaddr.getIdx(), value.getIdx())];
if (const auto marker = ShouldFastmem(ctx, inst)) {
const auto location = code.getCurr();
EmitWriteMemoryMov<bitsize>(code, r13 + vaddr, value);
fastmem_patch_info.emplace(
Common::BitCast<u64>(location),
FastmemPatchInfo{
Common::BitCast<u64>(code.getCurr()),
Common::BitCast<u64>(wrapped_fn),
*marker,
}
);
return;
}
Xbyak::Label abort, end;
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, abort, vaddr);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value);
code.L(end);
code.SwitchToFarCode();
code.L(abort);
code.call(wrapped_fn);
code.jmp(end, code.T_NEAR);
code.SwitchToNearCode();
}
void A32EmitX64::EmitA32ReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<8, &A32::UserCallbacks::MemoryWrite8>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<16, &A32::UserCallbacks::MemoryWrite16>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<32, &A32::UserCallbacks::MemoryWrite32>(ctx, inst);
}
void A32EmitX64::EmitA32WriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
WriteMemory<64, &A32::UserCallbacks::MemoryWrite64>(ctx, inst);
}
template <size_t bitsize, auto callback>
void A32EmitX64::ExclusiveReadMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0]);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
}
);
}
template <size_t bitsize, auto callback>
void A32EmitX64::ExclusiveWriteMemory(A32EmitContext& ctx, IR::Inst* inst) {
using T = mp::unsigned_integer_of_size<bitsize>;
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
ctx.reg_alloc.HostCall(inst, {}, args[0], args[1]);
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(A32JitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
code.CallLambda(
[](A32::UserConfig& conf, u32 vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
}) ? 0 : 1;
}
);
code.L(end);
}
void A32EmitX64::EmitA32ExclusiveReadMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<8, &A32::UserCallbacks::MemoryRead8>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<16, &A32::UserCallbacks::MemoryRead16>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<32, &A32::UserCallbacks::MemoryRead32>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveReadMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveReadMemory<64, &A32::UserCallbacks::MemoryRead64>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory8(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<8, &A32::UserCallbacks::MemoryWriteExclusive8>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory16(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<16, &A32::UserCallbacks::MemoryWriteExclusive16>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory32(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<32, &A32::UserCallbacks::MemoryWriteExclusive32>(ctx, inst);
}
void A32EmitX64::EmitA32ExclusiveWriteMemory64(A32EmitContext& ctx, IR::Inst* inst) {
ExclusiveWriteMemory<64, &A32::UserCallbacks::MemoryWriteExclusive64>(ctx, inst);
}
static void EmitCoprocessorException() {
ASSERT_FALSE("Should raise coproc exception here");
}
static void CallCoprocCallback(BlockOfCode& code, RegAlloc& reg_alloc, A32::Jit* jit_interface,
A32::Coprocessor::Callback callback, IR::Inst* inst = nullptr,
std::optional<Argument::copyable_reference> arg0 = {},
std::optional<Argument::copyable_reference> arg1 = {}) {
reg_alloc.HostCall(inst, {}, {}, arg0, arg1);
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(jit_interface));
if (callback.user_arg) {
code.mov(code.ABI_PARAM2, reinterpret_cast<u64>(*callback.user_arg));
}
code.CallFunction(callback.function);
}
void A32EmitX64::EmitA32CoprocInternalOperation(A32EmitContext& ctx, IR::Inst* inst) {
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const auto opc1 = static_cast<unsigned>(coproc_info[2]);
const auto CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
const auto CRn = static_cast<A32::CoprocReg>(coproc_info[4]);
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[5]);
const auto opc2 = static_cast<unsigned>(coproc_info[6]);
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
const auto action = coproc->CompileInternalOperation(two, opc1, CRd, CRn, CRm, opc2);
if (!action) {
EmitCoprocessorException();
return;
}
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action);
}
void A32EmitX64::EmitA32CoprocSendOneWord(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const auto opc1 = static_cast<unsigned>(coproc_info[2]);
const auto CRn = static_cast<A32::CoprocReg>(coproc_info[3]);
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[4]);
const auto opc2 = static_cast<unsigned>(coproc_info[5]);
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
const auto action = coproc->CompileSendOneWord(two, opc1, CRn, CRm, opc2);
if (std::holds_alternative<std::monostate>(action)) {
EmitCoprocessorException();
return;
}
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, nullptr, args[1]);
return;
}
if (const auto destination_ptr = std::get_if<u32*>(&action)) {
const Xbyak::Reg32 reg_word = ctx.reg_alloc.UseGpr(args[1]).cvt32();
const Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
code.mov(reg_destination_addr, reinterpret_cast<u64>(*destination_ptr));
code.mov(code.dword[reg_destination_addr], reg_word);
return;
}
UNREACHABLE();
}
void A32EmitX64::EmitA32CoprocSendTwoWords(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const auto opc = static_cast<unsigned>(coproc_info[2]);
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[3]);
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
const auto action = coproc->CompileSendTwoWords(two, opc, CRm);
if (std::holds_alternative<std::monostate>(action)) {
EmitCoprocessorException();
return;
}
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, nullptr, args[1], args[2]);
return;
}
if (const auto destination_ptrs = std::get_if<std::array<u32*, 2>>(&action)) {
const Xbyak::Reg32 reg_word1 = ctx.reg_alloc.UseGpr(args[1]).cvt32();
const Xbyak::Reg32 reg_word2 = ctx.reg_alloc.UseGpr(args[2]).cvt32();
const Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
code.mov(reg_destination_addr, reinterpret_cast<u64>((*destination_ptrs)[0]));
code.mov(code.dword[reg_destination_addr], reg_word1);
code.mov(reg_destination_addr, reinterpret_cast<u64>((*destination_ptrs)[1]));
code.mov(code.dword[reg_destination_addr], reg_word2);
return;
}
UNREACHABLE();
}
void A32EmitX64::EmitA32CoprocGetOneWord(A32EmitContext& ctx, IR::Inst* inst) {
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const auto opc1 = static_cast<unsigned>(coproc_info[2]);
const auto CRn = static_cast<A32::CoprocReg>(coproc_info[3]);
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[4]);
const auto opc2 = static_cast<unsigned>(coproc_info[5]);
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
const auto action = coproc->CompileGetOneWord(two, opc1, CRn, CRm, opc2);
if (std::holds_alternative<std::monostate>(action)) {
EmitCoprocessorException();
return;
}
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, inst);
return;
}
if (const auto source_ptr = std::get_if<u32*>(&action)) {
const Xbyak::Reg32 reg_word = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 reg_source_addr = ctx.reg_alloc.ScratchGpr();
code.mov(reg_source_addr, reinterpret_cast<u64>(*source_ptr));
code.mov(reg_word, code.dword[reg_source_addr]);
ctx.reg_alloc.DefineValue(inst, reg_word);
return;
}
UNREACHABLE();
}
void A32EmitX64::EmitA32CoprocGetTwoWords(A32EmitContext& ctx, IR::Inst* inst) {
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const unsigned opc = coproc_info[2];
const auto CRm = static_cast<A32::CoprocReg>(coproc_info[3]);
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
auto action = coproc->CompileGetTwoWords(two, opc, CRm);
if (std::holds_alternative<std::monostate>(action)) {
EmitCoprocessorException();
return;
}
if (const auto cb = std::get_if<A32::Coprocessor::Callback>(&action)) {
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *cb, inst);
return;
}
if (const auto source_ptrs = std::get_if<std::array<u32*, 2>>(&action)) {
const Xbyak::Reg64 reg_result = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 reg_destination_addr = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 reg_tmp = ctx.reg_alloc.ScratchGpr();
code.mov(reg_destination_addr, reinterpret_cast<u64>((*source_ptrs)[1]));
code.mov(reg_result.cvt32(), code.dword[reg_destination_addr]);
code.shl(reg_result, 32);
code.mov(reg_destination_addr, reinterpret_cast<u64>((*source_ptrs)[0]));
code.mov(reg_tmp.cvt32(), code.dword[reg_destination_addr]);
code.or_(reg_result, reg_tmp);
ctx.reg_alloc.DefineValue(inst, reg_result);
return;
}
UNREACHABLE();
}
void A32EmitX64::EmitA32CoprocLoadWords(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const bool long_transfer = coproc_info[2] != 0;
const auto CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
const bool has_option = coproc_info[4] != 0;
std::optional<u8> option = std::nullopt;
if (has_option) {
option = coproc_info[5];
}
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
const auto action = coproc->CompileLoadWords(two, long_transfer, CRd, option);
if (!action) {
EmitCoprocessorException();
return;
}
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]);
}
void A32EmitX64::EmitA32CoprocStoreWords(A32EmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const auto coproc_info = inst->GetArg(0).GetCoprocInfo();
const size_t coproc_num = coproc_info[0];
const bool two = coproc_info[1] != 0;
const bool long_transfer = coproc_info[2] != 0;
const auto CRd = static_cast<A32::CoprocReg>(coproc_info[3]);
const bool has_option = coproc_info[4] != 0;
std::optional<u8> option = std::nullopt;
if (has_option) {
option = coproc_info[5];
}
std::shared_ptr<A32::Coprocessor> coproc = conf.coprocessors[coproc_num];
if (!coproc) {
EmitCoprocessorException();
return;
}
const auto action = coproc->CompileStoreWords(two, long_transfer, CRd, option);
if (!action) {
EmitCoprocessorException();
return;
}
CallCoprocCallback(code, ctx.reg_alloc, jit_interface, *action, nullptr, args[1]);
}
std::string A32EmitX64::LocationDescriptorToFriendlyName(const IR::LocationDescriptor& ir_descriptor) const {
const A32::LocationDescriptor descriptor{ir_descriptor};
return fmt::format("a32_{}{:08X}_{}_fpcr{:08X}",
descriptor.TFlag() ? "t" : "a",
descriptor.PC(),
descriptor.EFlag() ? "be" : "le",
descriptor.FPSCR().Value());
}
void A32EmitX64::EmitTerminalImpl(IR::Term::Interpret terminal, IR::LocationDescriptor initial_location, bool) {
ASSERT_MSG(A32::LocationDescriptor{terminal.next}.TFlag() == A32::LocationDescriptor{initial_location}.TFlag(), "Unimplemented");
ASSERT_MSG(A32::LocationDescriptor{terminal.next}.EFlag() == A32::LocationDescriptor{initial_location}.EFlag(), "Unimplemented");
ASSERT_MSG(terminal.num_instructions == 1, "Unimplemented");
code.mov(code.ABI_PARAM2.cvt32(), A32::LocationDescriptor{terminal.next}.PC());
code.mov(code.ABI_PARAM3.cvt32(), 1);
code.mov(MJitStateReg(A32::Reg::PC), code.ABI_PARAM2.cvt32());
code.SwitchMxcsrOnExit();
Devirtualize<&A32::UserCallbacks::InterpreterFallback>(conf.callbacks).EmitCall(code);
code.ReturnFromRunCode(true); // TODO: Check cycles
}
void A32EmitX64::EmitTerminalImpl(IR::Term::ReturnToDispatch, IR::LocationDescriptor, bool) {
code.ReturnFromRunCode();
}
void A32EmitX64::EmitSetUpperLocationDescriptor(IR::LocationDescriptor new_location, IR::LocationDescriptor old_location) {
auto get_upper = [](const IR::LocationDescriptor& desc) -> u32 {
return static_cast<u32>(A32::LocationDescriptor{desc}.SetSingleStepping(false).UniqueHash() >> 32);
};
const u32 old_upper = get_upper(old_location);
const u32 new_upper = [&]{
const u32 mask = ~u32(conf.always_little_endian ? 0x2 : 0);
return get_upper(new_location) & mask;
}();
if (old_upper != new_upper) {
code.mov(dword[r15 + offsetof(A32JitState, upper_location_descriptor)], new_upper);
}
}
void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlock terminal, IR::LocationDescriptor initial_location, bool is_single_step) {
EmitSetUpperLocationDescriptor(terminal.next, initial_location);
if (!conf.enable_optimizations || is_single_step) {
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{terminal.next}.PC());
code.ReturnFromRunCode();
return;
}
code.cmp(qword[r15 + offsetof(A32JitState, cycles_remaining)], 0);
patch_information[terminal.next].jg.emplace_back(code.getCurr());
if (const auto next_bb = GetBasicBlock(terminal.next)) {
EmitPatchJg(terminal.next, next_bb->entrypoint);
} else {
EmitPatchJg(terminal.next);
}
Xbyak::Label dest;
code.jmp(dest, Xbyak::CodeGenerator::T_NEAR);
code.SwitchToFarCode();
code.align(16);
code.L(dest);
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{terminal.next}.PC());
PushRSBHelper(rax, rbx, terminal.next);
code.ForceReturnFromRunCode();
code.SwitchToNearCode();
}
void A32EmitX64::EmitTerminalImpl(IR::Term::LinkBlockFast terminal, IR::LocationDescriptor initial_location, bool is_single_step) {
EmitSetUpperLocationDescriptor(terminal.next, initial_location);
if (!conf.enable_optimizations || is_single_step) {
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{terminal.next}.PC());
code.ReturnFromRunCode();
return;
}
patch_information[terminal.next].jmp.emplace_back(code.getCurr());
if (const auto next_bb = GetBasicBlock(terminal.next)) {
EmitPatchJmp(terminal.next, next_bb->entrypoint);
} else {
EmitPatchJmp(terminal.next);
}
}
void A32EmitX64::EmitTerminalImpl(IR::Term::PopRSBHint, IR::LocationDescriptor, bool is_single_step) {
if (!conf.enable_optimizations || is_single_step) {
code.ReturnFromRunCode();
return;
}
code.jmp(terminal_handler_pop_rsb_hint);
}
void A32EmitX64::EmitTerminalImpl(IR::Term::FastDispatchHint, IR::LocationDescriptor, bool is_single_step) {
if (conf.enable_fast_dispatch && !is_single_step) {
code.jmp(terminal_handler_fast_dispatch_hint);
} else {
code.ReturnFromRunCode();
}
}
void A32EmitX64::EmitTerminalImpl(IR::Term::If terminal, IR::LocationDescriptor initial_location, bool is_single_step) {
Xbyak::Label pass = EmitCond(terminal.if_);
EmitTerminal(terminal.else_, initial_location, is_single_step);
code.L(pass);
EmitTerminal(terminal.then_, initial_location, is_single_step);
}
void A32EmitX64::EmitTerminalImpl(IR::Term::CheckBit terminal, IR::LocationDescriptor initial_location, bool is_single_step) {
Xbyak::Label fail;
code.cmp(code.byte[r15 + offsetof(A32JitState, check_bit)], u8(0));
code.jz(fail);
EmitTerminal(terminal.then_, initial_location, is_single_step);
code.L(fail);
EmitTerminal(terminal.else_, initial_location, is_single_step);
}
void A32EmitX64::EmitTerminalImpl(IR::Term::CheckHalt terminal, IR::LocationDescriptor initial_location, bool is_single_step) {
code.cmp(code.byte[r15 + offsetof(A32JitState, halt_requested)], u8(0));
code.jne(code.GetForceReturnFromRunCodeAddress());
EmitTerminal(terminal.else_, initial_location, is_single_step);
}
void A32EmitX64::EmitPatchJg(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
const CodePtr patch_location = code.getCurr();
if (target_code_ptr) {
code.jg(target_code_ptr);
} else {
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC());
code.jg(code.GetReturnFromRunCodeAddress());
}
code.EnsurePatchLocationSize(patch_location, 14);
}
void A32EmitX64::EmitPatchJmp(const IR::LocationDescriptor& target_desc, CodePtr target_code_ptr) {
const CodePtr patch_location = code.getCurr();
if (target_code_ptr) {
code.jmp(target_code_ptr);
} else {
code.mov(MJitStateReg(A32::Reg::PC), A32::LocationDescriptor{target_desc}.PC());
code.jmp(code.GetReturnFromRunCodeAddress());
}
code.EnsurePatchLocationSize(patch_location, 13);
}
void A32EmitX64::EmitPatchMovRcx(CodePtr target_code_ptr) {
if (!target_code_ptr) {
target_code_ptr = code.GetReturnFromRunCodeAddress();
}
const CodePtr patch_location = code.getCurr();
code.mov(code.rcx, reinterpret_cast<u64>(target_code_ptr));
code.EnsurePatchLocationSize(patch_location, 10);
}
void A32EmitX64::Unpatch(const IR::LocationDescriptor& location) {
EmitX64::Unpatch(location);
if (conf.enable_fast_dispatch) {
(*fast_dispatch_table_lookup)(location.Value()) = {};
}
}
} // namespace Dynarmic::Backend::X64