783fc707fa
Merge commit '5f7df9a182cdca4d7338289c2e52eddeec9c223d' into HEAD
866 lines
29 KiB
C++
866 lines
29 KiB
C++
// Formatting library for C++
|
|
//
|
|
// Copyright (c) 2012 - 2016, Victor Zverovich
|
|
// All rights reserved.
|
|
//
|
|
// For the license information refer to format.h.
|
|
|
|
#ifndef FMT_FORMAT_INL_H_
|
|
#define FMT_FORMAT_INL_H_
|
|
|
|
#include "format.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <cctype>
|
|
#include <cerrno>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstdarg>
|
|
#include <cstddef> // for std::ptrdiff_t
|
|
#include <cstring> // for std::memmove
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
# include <locale>
|
|
#endif
|
|
|
|
#if FMT_USE_WINDOWS_H
|
|
# if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
|
|
# define WIN32_LEAN_AND_MEAN
|
|
# endif
|
|
# if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
|
|
# include <windows.h>
|
|
# else
|
|
# define NOMINMAX
|
|
# include <windows.h>
|
|
# undef NOMINMAX
|
|
# endif
|
|
#endif
|
|
|
|
#if FMT_EXCEPTIONS
|
|
# define FMT_TRY try
|
|
# define FMT_CATCH(x) catch (x)
|
|
#else
|
|
# define FMT_TRY if (true)
|
|
# define FMT_CATCH(x) if (false)
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable: 4127) // conditional expression is constant
|
|
# pragma warning(disable: 4702) // unreachable code
|
|
// Disable deprecation warning for strerror. The latter is not called but
|
|
// MSVC fails to detect it.
|
|
# pragma warning(disable: 4996)
|
|
#endif
|
|
|
|
// Dummy implementations of strerror_r and strerror_s called if corresponding
|
|
// system functions are not available.
|
|
inline fmt::internal::null<> strerror_r(int, char *, ...) {
|
|
return fmt::internal::null<>();
|
|
}
|
|
inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) {
|
|
return fmt::internal::null<>();
|
|
}
|
|
|
|
FMT_BEGIN_NAMESPACE
|
|
|
|
namespace {
|
|
|
|
#ifndef _MSC_VER
|
|
# define FMT_SNPRINTF snprintf
|
|
#else // _MSC_VER
|
|
inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
# define FMT_SNPRINTF fmt_snprintf
|
|
#endif // _MSC_VER
|
|
|
|
#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
|
|
# define FMT_SWPRINTF snwprintf
|
|
#else
|
|
# define FMT_SWPRINTF swprintf
|
|
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
|
|
|
|
typedef void (*FormatFunc)(internal::buffer &, int, string_view);
|
|
|
|
// Portable thread-safe version of strerror.
|
|
// Sets buffer to point to a string describing the error code.
|
|
// This can be either a pointer to a string stored in buffer,
|
|
// or a pointer to some static immutable string.
|
|
// Returns one of the following values:
|
|
// 0 - success
|
|
// ERANGE - buffer is not large enough to store the error message
|
|
// other - failure
|
|
// Buffer should be at least of size 1.
|
|
int safe_strerror(
|
|
int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT {
|
|
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
|
|
|
|
class dispatcher {
|
|
private:
|
|
int error_code_;
|
|
char *&buffer_;
|
|
std::size_t buffer_size_;
|
|
|
|
// A noop assignment operator to avoid bogus warnings.
|
|
void operator=(const dispatcher &) {}
|
|
|
|
// Handle the result of XSI-compliant version of strerror_r.
|
|
int handle(int result) {
|
|
// glibc versions before 2.13 return result in errno.
|
|
return result == -1 ? errno : result;
|
|
}
|
|
|
|
// Handle the result of GNU-specific version of strerror_r.
|
|
int handle(char *message) {
|
|
// If the buffer is full then the message is probably truncated.
|
|
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
|
|
return ERANGE;
|
|
buffer_ = message;
|
|
return 0;
|
|
}
|
|
|
|
// Handle the case when strerror_r is not available.
|
|
int handle(internal::null<>) {
|
|
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
|
|
}
|
|
|
|
// Fallback to strerror_s when strerror_r is not available.
|
|
int fallback(int result) {
|
|
// If the buffer is full then the message is probably truncated.
|
|
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ?
|
|
ERANGE : result;
|
|
}
|
|
|
|
// Fallback to strerror if strerror_r and strerror_s are not available.
|
|
int fallback(internal::null<>) {
|
|
errno = 0;
|
|
buffer_ = strerror(error_code_);
|
|
return errno;
|
|
}
|
|
|
|
public:
|
|
dispatcher(int err_code, char *&buf, std::size_t buf_size)
|
|
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
|
|
|
|
int run() {
|
|
return handle(strerror_r(error_code_, buffer_, buffer_size_));
|
|
}
|
|
};
|
|
return dispatcher(error_code, buffer, buffer_size).run();
|
|
}
|
|
|
|
void format_error_code(internal::buffer &out, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
// Report error code making sure that the output fits into
|
|
// inline_buffer_size to avoid dynamic memory allocation and potential
|
|
// bad_alloc.
|
|
out.resize(0);
|
|
static const char SEP[] = ": ";
|
|
static const char ERROR_STR[] = "error ";
|
|
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
|
|
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
|
|
typedef internal::int_traits<int>::main_type main_type;
|
|
main_type abs_value = static_cast<main_type>(error_code);
|
|
if (internal::is_negative(error_code)) {
|
|
abs_value = 0 - abs_value;
|
|
++error_code_size;
|
|
}
|
|
error_code_size += internal::count_digits(abs_value);
|
|
writer w(out);
|
|
if (message.size() <= inline_buffer_size - error_code_size) {
|
|
w.write(message);
|
|
w.write(SEP);
|
|
}
|
|
w.write(ERROR_STR);
|
|
w.write(error_code);
|
|
assert(out.size() <= inline_buffer_size);
|
|
}
|
|
|
|
void report_error(FormatFunc func, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
memory_buffer full_message;
|
|
func(full_message, error_code, message);
|
|
// Use Writer::data instead of Writer::c_str to avoid potential memory
|
|
// allocation.
|
|
std::fwrite(full_message.data(), full_message.size(), 1, stderr);
|
|
std::fputc('\n', stderr);
|
|
}
|
|
} // namespace
|
|
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
class locale {
|
|
private:
|
|
std::locale locale_;
|
|
|
|
public:
|
|
explicit locale(std::locale loc = std::locale()) : locale_(loc) {}
|
|
std::locale get() { return locale_; }
|
|
};
|
|
|
|
FMT_FUNC size_t internal::count_code_points(u8string_view s) {
|
|
const char8_t *data = s.data();
|
|
int num_code_points = 0;
|
|
for (size_t i = 0, size = s.size(); i != size; ++i) {
|
|
if ((data[i].value & 0xc0) != 0x80)
|
|
++num_code_points;
|
|
}
|
|
return num_code_points;
|
|
}
|
|
|
|
template <typename Char>
|
|
FMT_FUNC Char internal::thousands_sep(locale_provider *lp) {
|
|
std::locale loc = lp ? lp->locale().get() : std::locale();
|
|
return std::use_facet<std::numpunct<Char>>(loc).thousands_sep();
|
|
}
|
|
#else
|
|
template <typename Char>
|
|
FMT_FUNC Char internal::thousands_sep(locale_provider *lp) {
|
|
return FMT_STATIC_THOUSANDS_SEPARATOR;
|
|
}
|
|
#endif
|
|
|
|
FMT_FUNC void system_error::init(
|
|
int err_code, string_view format_str, format_args args) {
|
|
error_code_ = err_code;
|
|
memory_buffer buffer;
|
|
format_system_error(buffer, err_code, vformat(format_str, args));
|
|
std::runtime_error &base = *this;
|
|
base = std::runtime_error(to_string(buffer));
|
|
}
|
|
|
|
namespace internal {
|
|
template <typename T>
|
|
int char_traits<char>::format_float(
|
|
char *buffer, std::size_t size, const char *format, int precision, T value) {
|
|
return precision < 0 ?
|
|
FMT_SNPRINTF(buffer, size, format, value) :
|
|
FMT_SNPRINTF(buffer, size, format, precision, value);
|
|
}
|
|
|
|
template <typename T>
|
|
int char_traits<wchar_t>::format_float(
|
|
wchar_t *buffer, std::size_t size, const wchar_t *format, int precision,
|
|
T value) {
|
|
return precision < 0 ?
|
|
FMT_SWPRINTF(buffer, size, format, value) :
|
|
FMT_SWPRINTF(buffer, size, format, precision, value);
|
|
}
|
|
|
|
template <typename T>
|
|
const char basic_data<T>::DIGITS[] =
|
|
"0001020304050607080910111213141516171819"
|
|
"2021222324252627282930313233343536373839"
|
|
"4041424344454647484950515253545556575859"
|
|
"6061626364656667686970717273747576777879"
|
|
"8081828384858687888990919293949596979899";
|
|
|
|
#define FMT_POWERS_OF_10(factor) \
|
|
factor * 10, \
|
|
factor * 100, \
|
|
factor * 1000, \
|
|
factor * 10000, \
|
|
factor * 100000, \
|
|
factor * 1000000, \
|
|
factor * 10000000, \
|
|
factor * 100000000, \
|
|
factor * 1000000000
|
|
|
|
template <typename T>
|
|
const uint32_t basic_data<T>::POWERS_OF_10_32[] = {
|
|
1, FMT_POWERS_OF_10(1)
|
|
};
|
|
|
|
template <typename T>
|
|
const uint32_t basic_data<T>::ZERO_OR_POWERS_OF_10_32[] = {
|
|
0, FMT_POWERS_OF_10(1)
|
|
};
|
|
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::ZERO_OR_POWERS_OF_10_64[] = {
|
|
0,
|
|
FMT_POWERS_OF_10(1),
|
|
FMT_POWERS_OF_10(1000000000ull),
|
|
10000000000000000000ull
|
|
};
|
|
|
|
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
|
|
// These are generated by support/compute-powers.py.
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {
|
|
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
|
|
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
|
|
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
|
|
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
|
|
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
|
|
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
|
|
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
|
|
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
|
|
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
|
|
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
|
|
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
|
|
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
|
|
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
|
|
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
|
|
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
|
|
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
|
|
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
|
|
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
|
|
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
|
|
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
|
|
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
|
|
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
|
|
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
|
|
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
|
|
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
|
|
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
|
|
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
|
|
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
|
|
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
|
|
};
|
|
|
|
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
|
|
// to significands above.
|
|
template <typename T>
|
|
const int16_t basic_data<T>::POW10_EXPONENTS[] = {
|
|
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
|
|
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
|
|
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
|
|
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
|
|
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
|
|
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
|
|
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
|
|
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066
|
|
};
|
|
|
|
template <typename T> const char basic_data<T>::RESET_COLOR[] = "\x1b[0m";
|
|
template <typename T> const wchar_t basic_data<T>::WRESET_COLOR[] = L"\x1b[0m";
|
|
|
|
// A handmade floating-point number f * pow(2, e).
|
|
class fp {
|
|
private:
|
|
typedef uint64_t significand_type;
|
|
|
|
// All sizes are in bits.
|
|
static FMT_CONSTEXPR_DECL const int char_size =
|
|
std::numeric_limits<unsigned char>::digits;
|
|
// Subtract 1 to account for an implicit most significant bit in the
|
|
// normalized form.
|
|
static FMT_CONSTEXPR_DECL const int double_significand_size =
|
|
std::numeric_limits<double>::digits - 1;
|
|
static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
|
|
1ull << double_significand_size;
|
|
|
|
public:
|
|
significand_type f;
|
|
int e;
|
|
|
|
static FMT_CONSTEXPR_DECL const int significand_size =
|
|
sizeof(significand_type) * char_size;
|
|
|
|
fp(): f(0), e(0) {}
|
|
fp(uint64_t f, int e): f(f), e(e) {}
|
|
|
|
// Constructs fp from an IEEE754 double. It is a template to prevent compile
|
|
// errors on platforms where double is not IEEE754.
|
|
template <typename Double>
|
|
explicit fp(Double d) {
|
|
// Assume double is in the format [sign][exponent][significand].
|
|
typedef std::numeric_limits<Double> limits;
|
|
const int double_size = static_cast<int>(sizeof(Double) * char_size);
|
|
const int exponent_size =
|
|
double_size - double_significand_size - 1; // -1 for sign
|
|
const uint64_t significand_mask = implicit_bit - 1;
|
|
const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask;
|
|
const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
|
|
auto u = bit_cast<uint64_t>(d);
|
|
auto biased_e = (u & exponent_mask) >> double_significand_size;
|
|
f = u & significand_mask;
|
|
if (biased_e != 0)
|
|
f += implicit_bit;
|
|
else
|
|
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
|
|
e = static_cast<int>(biased_e - exponent_bias - double_significand_size);
|
|
}
|
|
|
|
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
|
|
template <int SHIFT = 0>
|
|
void normalize() {
|
|
// Handle subnormals.
|
|
auto shifted_implicit_bit = implicit_bit << SHIFT;
|
|
while ((f & shifted_implicit_bit) == 0) {
|
|
f <<= 1;
|
|
--e;
|
|
}
|
|
// Subtract 1 to account for hidden bit.
|
|
auto offset = significand_size - double_significand_size - SHIFT - 1;
|
|
f <<= offset;
|
|
e -= offset;
|
|
}
|
|
|
|
// Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where
|
|
// a boundary is a value half way between the number and its predecessor
|
|
// (lower) or successor (upper). The upper boundary is normalized and lower
|
|
// has the same exponent but may be not normalized.
|
|
void compute_boundaries(fp &lower, fp &upper) const {
|
|
lower = f == implicit_bit ?
|
|
fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
|
|
upper = fp((f << 1) + 1, e - 1);
|
|
upper.normalize<1>(); // 1 is to account for the exponent shift above.
|
|
lower.f <<= lower.e - upper.e;
|
|
lower.e = upper.e;
|
|
}
|
|
};
|
|
|
|
// Returns an fp number representing x - y. Result may not be normalized.
|
|
inline fp operator-(fp x, fp y) {
|
|
FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands");
|
|
return fp(x.f - y.f, x.e);
|
|
}
|
|
|
|
// Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest
|
|
// with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized.
|
|
FMT_API fp operator*(fp x, fp y);
|
|
|
|
// Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its
|
|
// (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3.
|
|
FMT_API fp get_cached_power(int min_exponent, int &pow10_exponent);
|
|
|
|
FMT_FUNC fp operator*(fp x, fp y) {
|
|
// Multiply 32-bit parts of significands.
|
|
uint64_t mask = (1ULL << 32) - 1;
|
|
uint64_t a = x.f >> 32, b = x.f & mask;
|
|
uint64_t c = y.f >> 32, d = y.f & mask;
|
|
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
|
|
// Compute mid 64-bit of result and round.
|
|
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
|
|
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64);
|
|
}
|
|
|
|
FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) {
|
|
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
|
|
int index = static_cast<int>(std::ceil(
|
|
(min_exponent + fp::significand_size - 1) * one_over_log2_10));
|
|
// Decimal exponent of the first (smallest) cached power of 10.
|
|
const int first_dec_exp = -348;
|
|
// Difference between 2 consecutive decimal exponents in cached powers of 10.
|
|
const int dec_exp_step = 8;
|
|
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
|
|
pow10_exponent = first_dec_exp + index * dec_exp_step;
|
|
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
|
|
}
|
|
|
|
// Generates output using Grisu2 digit-gen algorithm.
|
|
FMT_FUNC void grisu2_gen_digits(
|
|
const fp &scaled_value, const fp &scaled_upper, uint64_t delta,
|
|
char *buffer, size_t &size, int &dec_exp) {
|
|
internal::fp one(1ull << -scaled_upper.e, scaled_upper.e);
|
|
// hi (p1 in Grisu) contains the most significant digits of scaled_upper.
|
|
// hi = floor(scaled_upper / one).
|
|
uint32_t hi = static_cast<uint32_t>(scaled_upper.f >> -one.e);
|
|
// lo (p2 in Grisu) contains the least significants digits of scaled_upper.
|
|
// lo = scaled_upper mod 1.
|
|
uint64_t lo = scaled_upper.f & (one.f - 1);
|
|
size = 0;
|
|
auto exp = count_digits(hi); // kappa in Grisu.
|
|
while (exp > 0) {
|
|
uint32_t digit = 0;
|
|
// This optimization by miloyip reduces the number of integer divisions by
|
|
// one per iteration.
|
|
switch (exp) {
|
|
case 10: digit = hi / 1000000000; hi %= 1000000000; break;
|
|
case 9: digit = hi / 100000000; hi %= 100000000; break;
|
|
case 8: digit = hi / 10000000; hi %= 10000000; break;
|
|
case 7: digit = hi / 1000000; hi %= 1000000; break;
|
|
case 6: digit = hi / 100000; hi %= 100000; break;
|
|
case 5: digit = hi / 10000; hi %= 10000; break;
|
|
case 4: digit = hi / 1000; hi %= 1000; break;
|
|
case 3: digit = hi / 100; hi %= 100; break;
|
|
case 2: digit = hi / 10; hi %= 10; break;
|
|
case 1: digit = hi; hi = 0; break;
|
|
default:
|
|
FMT_ASSERT(false, "invalid number of digits");
|
|
}
|
|
if (digit != 0 || size != 0)
|
|
buffer[size++] = static_cast<char>('0' + digit);
|
|
--exp;
|
|
uint64_t remainder = (static_cast<uint64_t>(hi) << -one.e) + lo;
|
|
if (remainder <= delta) {
|
|
dec_exp += exp;
|
|
// TODO: use scaled_value
|
|
(void)scaled_value;
|
|
return;
|
|
}
|
|
}
|
|
for (;;) {
|
|
lo *= 10;
|
|
delta *= 10;
|
|
char digit = static_cast<char>(lo >> -one.e);
|
|
if (digit != 0 || size != 0)
|
|
buffer[size++] = static_cast<char>('0' + digit);
|
|
lo &= one.f - 1;
|
|
--exp;
|
|
if (lo < delta) {
|
|
dec_exp += exp;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
FMT_FUNC void grisu2_format_positive(double value, char *buffer, size_t &size,
|
|
int &dec_exp) {
|
|
FMT_ASSERT(value > 0, "value is nonpositive");
|
|
fp fp_value(value);
|
|
fp lower, upper; // w^- and w^+ in the Grisu paper.
|
|
fp_value.compute_boundaries(lower, upper);
|
|
// Find a cached power of 10 close to 1 / upper.
|
|
const int min_exp = -60; // alpha in Grisu.
|
|
auto dec_pow = get_cached_power( // \tilde{c}_{-k} in Grisu.
|
|
min_exp - (upper.e + fp::significand_size), dec_exp);
|
|
dec_exp = -dec_exp;
|
|
fp_value.normalize();
|
|
fp scaled_value = fp_value * dec_pow;
|
|
fp scaled_lower = lower * dec_pow; // \tilde{M}^- in Grisu.
|
|
fp scaled_upper = upper * dec_pow; // \tilde{M}^+ in Grisu.
|
|
++scaled_lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
|
|
--scaled_upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
|
|
uint64_t delta = scaled_upper.f - scaled_lower.f;
|
|
grisu2_gen_digits(scaled_value, scaled_upper, delta, buffer, size, dec_exp);
|
|
}
|
|
|
|
FMT_FUNC void round(char *buffer, size_t &size, int &exp,
|
|
int digits_to_remove) {
|
|
size -= to_unsigned(digits_to_remove);
|
|
exp += digits_to_remove;
|
|
int digit = buffer[size] - '0';
|
|
// TODO: proper rounding and carry
|
|
if (digit > 5 || (digit == 5 && (digits_to_remove > 1 ||
|
|
(buffer[size - 1] - '0') % 2) != 0)) {
|
|
++buffer[size - 1];
|
|
}
|
|
}
|
|
|
|
// Writes the exponent exp in the form "[+-]d{1,3}" to buffer.
|
|
FMT_FUNC char *write_exponent(char *buffer, int exp) {
|
|
FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range");
|
|
if (exp < 0) {
|
|
*buffer++ = '-';
|
|
exp = -exp;
|
|
} else {
|
|
*buffer++ = '+';
|
|
}
|
|
if (exp >= 100) {
|
|
*buffer++ = static_cast<char>('0' + exp / 100);
|
|
exp %= 100;
|
|
const char *d = data::DIGITS + exp * 2;
|
|
*buffer++ = d[0];
|
|
*buffer++ = d[1];
|
|
} else {
|
|
const char *d = data::DIGITS + exp * 2;
|
|
*buffer++ = d[0];
|
|
*buffer++ = d[1];
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
FMT_FUNC void format_exp_notation(
|
|
char *buffer, size_t &size, int exp, int precision, bool upper) {
|
|
// Insert a decimal point after the first digit and add an exponent.
|
|
std::memmove(buffer + 2, buffer + 1, size - 1);
|
|
buffer[1] = '.';
|
|
exp += static_cast<int>(size) - 1;
|
|
int num_digits = precision - static_cast<int>(size) + 1;
|
|
if (num_digits > 0) {
|
|
std::uninitialized_fill_n(buffer + size + 1, num_digits, '0');
|
|
size += to_unsigned(num_digits);
|
|
} else if (num_digits < 0) {
|
|
round(buffer, size, exp, -num_digits);
|
|
}
|
|
char *p = buffer + size + 1;
|
|
*p++ = upper ? 'E' : 'e';
|
|
size = to_unsigned(write_exponent(p, exp) - buffer);
|
|
}
|
|
|
|
// Prettifies the output of the Grisu2 algorithm.
|
|
// The number is given as v = buffer * 10^exp.
|
|
FMT_FUNC void grisu2_prettify(char *buffer, size_t &size, int exp,
|
|
int precision, bool upper) {
|
|
// pow(10, full_exp - 1) <= v <= pow(10, full_exp).
|
|
int int_size = static_cast<int>(size);
|
|
int full_exp = int_size + exp;
|
|
const int exp_threshold = 21;
|
|
if (int_size <= full_exp && full_exp <= exp_threshold) {
|
|
// 1234e7 -> 12340000000[.0+]
|
|
std::uninitialized_fill_n(buffer + int_size, full_exp - int_size, '0');
|
|
char *p = buffer + full_exp;
|
|
if (precision > 0) {
|
|
*p++ = '.';
|
|
std::uninitialized_fill_n(p, precision, '0');
|
|
p += precision;
|
|
}
|
|
size = to_unsigned(p - buffer);
|
|
} else if (0 < full_exp && full_exp <= exp_threshold) {
|
|
// 1234e-2 -> 12.34[0+]
|
|
int fractional_size = -exp;
|
|
std::memmove(buffer + full_exp + 1, buffer + full_exp,
|
|
to_unsigned(fractional_size));
|
|
buffer[full_exp] = '.';
|
|
int num_zeros = precision - fractional_size;
|
|
if (num_zeros > 0) {
|
|
std::uninitialized_fill_n(buffer + size + 1, num_zeros, '0');
|
|
size += to_unsigned(num_zeros);
|
|
}
|
|
++size;
|
|
} else if (-6 < full_exp && full_exp <= 0) {
|
|
// 1234e-6 -> 0.001234
|
|
int offset = 2 - full_exp;
|
|
std::memmove(buffer + offset, buffer, size);
|
|
buffer[0] = '0';
|
|
buffer[1] = '.';
|
|
std::uninitialized_fill_n(buffer + 2, -full_exp, '0');
|
|
size = to_unsigned(int_size + offset);
|
|
} else {
|
|
format_exp_notation(buffer, size, exp, precision, upper);
|
|
}
|
|
}
|
|
|
|
#if FMT_CLANG_VERSION
|
|
# define FMT_FALLTHROUGH [[clang::fallthrough]];
|
|
#elif FMT_GCC_VERSION >= 700
|
|
# define FMT_FALLTHROUGH [[gnu::fallthrough]];
|
|
#else
|
|
# define FMT_FALLTHROUGH
|
|
#endif
|
|
|
|
// Formats a nonnegative value using Grisu2 algorithm. Grisu2 doesn't give any
|
|
// guarantees on the shortness of the result.
|
|
FMT_FUNC void grisu2_format(double value, char *buffer, size_t &size, char type,
|
|
int precision, bool write_decimal_point) {
|
|
FMT_ASSERT(value >= 0, "value is negative");
|
|
int dec_exp = 0; // K in Grisu.
|
|
if (value > 0) {
|
|
grisu2_format_positive(value, buffer, size, dec_exp);
|
|
} else {
|
|
*buffer = '0';
|
|
size = 1;
|
|
}
|
|
const int default_precision = 6;
|
|
if (precision < 0)
|
|
precision = default_precision;
|
|
bool upper = false;
|
|
switch (type) {
|
|
case 'G':
|
|
upper = true;
|
|
FMT_FALLTHROUGH
|
|
case '\0': case 'g': {
|
|
int digits_to_remove = static_cast<int>(size) - precision;
|
|
if (digits_to_remove > 0) {
|
|
round(buffer, size, dec_exp, digits_to_remove);
|
|
// Remove trailing zeros.
|
|
while (size > 0 && buffer[size - 1] == '0') {
|
|
--size;
|
|
++dec_exp;
|
|
}
|
|
}
|
|
precision = 0;
|
|
break;
|
|
}
|
|
case 'F':
|
|
upper = true;
|
|
FMT_FALLTHROUGH
|
|
case 'f': {
|
|
int digits_to_remove = -dec_exp - precision;
|
|
if (digits_to_remove > 0) {
|
|
if (digits_to_remove >= static_cast<int>(size))
|
|
digits_to_remove = static_cast<int>(size) - 1;
|
|
round(buffer, size, dec_exp, digits_to_remove);
|
|
}
|
|
break;
|
|
}
|
|
case 'e': case 'E':
|
|
format_exp_notation(buffer, size, dec_exp, precision, type == 'E');
|
|
return;
|
|
}
|
|
if (write_decimal_point && precision < 1)
|
|
precision = 1;
|
|
grisu2_prettify(buffer, size, dec_exp, precision, upper);
|
|
}
|
|
} // namespace internal
|
|
|
|
#if FMT_USE_WINDOWS_H
|
|
|
|
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) {
|
|
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
|
|
if (s.size() > INT_MAX)
|
|
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
|
|
int s_size = static_cast<int>(s.size());
|
|
if (s_size == 0) {
|
|
// MultiByteToWideChar does not support zero length, handle separately.
|
|
buffer_.resize(1);
|
|
buffer_[0] = 0;
|
|
return;
|
|
}
|
|
|
|
int length = MultiByteToWideChar(
|
|
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0);
|
|
if (length == 0)
|
|
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
|
|
buffer_.resize(length + 1);
|
|
length = MultiByteToWideChar(
|
|
CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length);
|
|
if (length == 0)
|
|
FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
|
|
buffer_[length] = 0;
|
|
}
|
|
|
|
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
|
|
if (int error_code = convert(s)) {
|
|
FMT_THROW(windows_error(error_code,
|
|
"cannot convert string from UTF-16 to UTF-8"));
|
|
}
|
|
}
|
|
|
|
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) {
|
|
if (s.size() > INT_MAX)
|
|
return ERROR_INVALID_PARAMETER;
|
|
int s_size = static_cast<int>(s.size());
|
|
if (s_size == 0) {
|
|
// WideCharToMultiByte does not support zero length, handle separately.
|
|
buffer_.resize(1);
|
|
buffer_[0] = 0;
|
|
return 0;
|
|
}
|
|
|
|
int length = WideCharToMultiByte(
|
|
CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL);
|
|
if (length == 0)
|
|
return GetLastError();
|
|
buffer_.resize(length + 1);
|
|
length = WideCharToMultiByte(
|
|
CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL);
|
|
if (length == 0)
|
|
return GetLastError();
|
|
buffer_[length] = 0;
|
|
return 0;
|
|
}
|
|
|
|
FMT_FUNC void windows_error::init(
|
|
int err_code, string_view format_str, format_args args) {
|
|
error_code_ = err_code;
|
|
memory_buffer buffer;
|
|
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
|
|
std::runtime_error &base = *this;
|
|
base = std::runtime_error(to_string(buffer));
|
|
}
|
|
|
|
FMT_FUNC void internal::format_windows_error(
|
|
internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
|
|
FMT_TRY {
|
|
wmemory_buffer buf;
|
|
buf.resize(inline_buffer_size);
|
|
for (;;) {
|
|
wchar_t *system_message = &buf[0];
|
|
int result = FormatMessageW(
|
|
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
|
FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
|
|
system_message, static_cast<uint32_t>(buf.size()), FMT_NULL);
|
|
if (result != 0) {
|
|
utf16_to_utf8 utf8_message;
|
|
if (utf8_message.convert(system_message) == ERROR_SUCCESS) {
|
|
writer w(out);
|
|
w.write(message);
|
|
w.write(": ");
|
|
w.write(utf8_message);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
|
|
break; // Can't get error message, report error code instead.
|
|
buf.resize(buf.size() * 2);
|
|
}
|
|
} FMT_CATCH(...) {}
|
|
format_error_code(out, error_code, message);
|
|
}
|
|
|
|
#endif // FMT_USE_WINDOWS_H
|
|
|
|
FMT_FUNC void format_system_error(
|
|
internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT {
|
|
FMT_TRY {
|
|
memory_buffer buf;
|
|
buf.resize(inline_buffer_size);
|
|
for (;;) {
|
|
char *system_message = &buf[0];
|
|
int result = safe_strerror(error_code, system_message, buf.size());
|
|
if (result == 0) {
|
|
writer w(out);
|
|
w.write(message);
|
|
w.write(": ");
|
|
w.write(system_message);
|
|
return;
|
|
}
|
|
if (result != ERANGE)
|
|
break; // Can't get error message, report error code instead.
|
|
buf.resize(buf.size() * 2);
|
|
}
|
|
} FMT_CATCH(...) {}
|
|
format_error_code(out, error_code, message);
|
|
}
|
|
|
|
template <typename Char>
|
|
void basic_fixed_buffer<Char>::grow(std::size_t) {
|
|
FMT_THROW(std::runtime_error("buffer overflow"));
|
|
}
|
|
|
|
FMT_FUNC void internal::error_handler::on_error(const char *message) {
|
|
FMT_THROW(format_error(message));
|
|
}
|
|
|
|
FMT_FUNC void report_system_error(
|
|
int error_code, fmt::string_view message) FMT_NOEXCEPT {
|
|
report_error(format_system_error, error_code, message);
|
|
}
|
|
|
|
#if FMT_USE_WINDOWS_H
|
|
FMT_FUNC void report_windows_error(
|
|
int error_code, fmt::string_view message) FMT_NOEXCEPT {
|
|
report_error(internal::format_windows_error, error_code, message);
|
|
}
|
|
#endif
|
|
|
|
FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) {
|
|
memory_buffer buffer;
|
|
vformat_to(buffer, format_str, args);
|
|
std::fwrite(buffer.data(), 1, buffer.size(), f);
|
|
}
|
|
|
|
FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) {
|
|
wmemory_buffer buffer;
|
|
vformat_to(buffer, format_str, args);
|
|
std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f);
|
|
}
|
|
|
|
FMT_FUNC void vprint(string_view format_str, format_args args) {
|
|
vprint(stdout, format_str, args);
|
|
}
|
|
|
|
FMT_FUNC void vprint(wstring_view format_str, wformat_args args) {
|
|
vprint(stdout, format_str, args);
|
|
}
|
|
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
FMT_FUNC locale locale_provider::locale() { return fmt::locale(); }
|
|
#endif
|
|
|
|
FMT_END_NAMESPACE
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // FMT_FORMAT_INL_H_
|