citra/src/core/core_timing.cpp
James Rowe 276d56ca9b Add CPU Clock Frequency slider
This slider affects the number of cycles that the guest cpu emulation
reports that have passed since the last time slice. This option scales
the result returned by a percentage that the user selects. In some games
underclocking the CPU can give a major speedup. Exposing this as an
option will give users something to toy with for performance, while also
potentially enhancing games that experience lag on the real console
2020-02-21 16:03:07 -07:00

210 lines
6.8 KiB
C++

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <tuple>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core_timing.h"
namespace Core {
// Sort by time, unless the times are the same, in which case sort by the order added to the queue
bool Timing::Event::operator>(const Timing::Event& right) const {
return std::tie(time, fifo_order) > std::tie(right.time, right.fifo_order);
}
bool Timing::Event::operator<(const Timing::Event& right) const {
return std::tie(time, fifo_order) < std::tie(right.time, right.fifo_order);
}
Timing::Timing(std::size_t num_cores, u32 cpu_clock_percentage) {
timers.resize(num_cores);
for (std::size_t i = 0; i < num_cores; ++i) {
timers[i] = std::make_shared<Timer>(100.0 / cpu_clock_percentage);
}
current_timer = timers[0];
}
void Timing::UpdateClockSpeed(u32 cpu_clock_percentage) {
for (auto& timer : timers) {
timer->cpu_clock_scale = 100.0 / cpu_clock_percentage;
}
}
TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback callback) {
// check for existing type with same name.
// we want event type names to remain unique so that we can use them for serialization.
ASSERT_MSG(event_types.find(name) == event_types.end(),
"CoreTiming Event \"{}\" is already registered. Events should only be registered "
"during Init to avoid breaking save states.",
name);
auto info = event_types.emplace(name, TimingEventType{callback, nullptr});
TimingEventType* event_type = &info.first->second;
event_type->name = &info.first->first;
return event_type;
}
void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata,
std::size_t core_id) {
ASSERT(event_type != nullptr);
std::shared_ptr<Timing::Timer> timer;
if (core_id == std::numeric_limits<std::size_t>::max()) {
timer = current_timer;
} else {
ASSERT(core_id < timers.size());
timer = timers.at(core_id);
}
s64 timeout = timer->GetTicks() + cycles_into_future;
if (current_timer == timer) {
// If this event needs to be scheduled before the next advance(), force one early
if (!timer->is_timer_sane)
timer->ForceExceptionCheck(cycles_into_future);
timer->event_queue.emplace_back(
Event{timeout, timer->event_fifo_id++, userdata, event_type});
std::push_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>());
} else {
timer->ts_queue.Push(Event{static_cast<s64>(timer->GetTicks() + cycles_into_future), 0,
userdata, event_type});
}
}
void Timing::UnscheduleEvent(const TimingEventType* event_type, u64 userdata) {
for (auto timer : timers) {
auto itr = std::remove_if(
timer->event_queue.begin(), timer->event_queue.end(),
[&](const Event& e) { return e.type == event_type && e.userdata == userdata; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != timer->event_queue.end()) {
timer->event_queue.erase(itr, timer->event_queue.end());
std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>());
}
}
// TODO:remove events from ts_queue
}
void Timing::RemoveEvent(const TimingEventType* event_type) {
for (auto timer : timers) {
auto itr = std::remove_if(timer->event_queue.begin(), timer->event_queue.end(),
[&](const Event& e) { return e.type == event_type; });
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != timer->event_queue.end()) {
timer->event_queue.erase(itr, timer->event_queue.end());
std::make_heap(timer->event_queue.begin(), timer->event_queue.end(), std::greater<>());
}
}
// TODO:remove events from ts_queue
}
void Timing::SetCurrentTimer(std::size_t core_id) {
current_timer = timers[core_id];
}
s64 Timing::GetTicks() const {
return current_timer->GetTicks();
}
s64 Timing::GetGlobalTicks() const {
return global_timer;
}
std::chrono::microseconds Timing::GetGlobalTimeUs() const {
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE_ARM11};
}
std::shared_ptr<Timing::Timer> Timing::GetTimer(std::size_t cpu_id) {
return timers[cpu_id];
}
Timing::Timer::Timer(double cpu_clock_scale_) : cpu_clock_scale(cpu_clock_scale_) {}
Timing::Timer::~Timer() {
MoveEvents();
}
u64 Timing::Timer::GetTicks() const {
u64 ticks = static_cast<u64>(executed_ticks);
if (!is_timer_sane) {
ticks += slice_length - downcount;
}
return ticks;
}
void Timing::Timer::AddTicks(u64 ticks) {
downcount -= static_cast<u64>(ticks * cpu_clock_scale);
}
u64 Timing::Timer::GetIdleTicks() const {
return static_cast<u64>(idled_cycles);
}
void Timing::Timer::ForceExceptionCheck(s64 cycles) {
cycles = std::max<s64>(0, cycles);
if (downcount > cycles) {
slice_length -= downcount - cycles;
downcount = cycles;
}
}
void Timing::Timer::MoveEvents() {
for (Event ev; ts_queue.Pop(ev);) {
ev.fifo_order = event_fifo_id++;
event_queue.emplace_back(std::move(ev));
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
s64 Timing::Timer::GetMaxSliceLength() const {
auto next_event = std::find_if(event_queue.begin(), event_queue.end(),
[&](const Event& e) { return e.time - executed_ticks > 0; });
if (next_event != event_queue.end()) {
return next_event->time - executed_ticks;
}
return MAX_SLICE_LENGTH;
}
void Timing::Timer::Advance(s64 max_slice_length) {
MoveEvents();
s64 cycles_executed = slice_length - downcount;
idled_cycles = 0;
executed_ticks += cycles_executed;
slice_length = max_slice_length;
is_timer_sane = true;
while (!event_queue.empty() && event_queue.front().time <= executed_ticks) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
evt.type->callback(evt.userdata, executed_ticks - evt.time);
}
is_timer_sane = false;
// Still events left (scheduled in the future)
if (!event_queue.empty()) {
slice_length = static_cast<int>(
std::min<s64>(event_queue.front().time - executed_ticks, max_slice_length));
}
downcount = slice_length;
}
void Timing::Timer::Idle() {
idled_cycles += downcount;
downcount = 0;
}
s64 Timing::Timer::GetDowncount() const {
return downcount;
}
} // namespace Core