dynarmic/tests/test_generator.cpp

663 lines
23 KiB
C++
Raw Normal View History

2022-07-22 14:57:39 +01:00
/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <algorithm>
#include <array>
#include <cstdio>
#include <functional>
#include <tuple>
#include <vector>
#include <mcl/bit/swap.hpp>
#include <mcl/stdint.hpp>
#include "./A32/testenv.h"
2022-11-26 16:05:58 +00:00
#include "./A64/testenv.h"
2022-07-22 14:57:39 +01:00
#include "./fuzz_util.h"
#include "./rand_int.h"
#include "dynarmic/common/fp/fpcr.h"
#include "dynarmic/common/fp/fpsr.h"
#include "dynarmic/frontend/A32/ITState.h"
#include "dynarmic/frontend/A32/a32_location_descriptor.h"
#include "dynarmic/frontend/A32/a32_types.h"
#include "dynarmic/frontend/A32/translate/a32_translate.h"
2022-11-26 16:05:58 +00:00
#include "dynarmic/frontend/A64/a64_location_descriptor.h"
#include "dynarmic/frontend/A64/a64_types.h"
#include "dynarmic/frontend/A64/translate/a64_translate.h"
2022-07-22 14:57:39 +01:00
#include "dynarmic/interface/A32/a32.h"
2022-11-26 16:05:58 +00:00
#include "dynarmic/interface/A64/a64.h"
2022-07-22 14:57:39 +01:00
#include "dynarmic/ir/basic_block.h"
#include "dynarmic/ir/location_descriptor.h"
#include "dynarmic/ir/opcodes.h"
// Must be declared last for all necessary operator<< to be declared prior to this.
#include <fmt/format.h>
#include <fmt/ostream.h>
2022-08-02 00:36:42 +01:00
constexpr bool mask_fpsr_cum_bits = true;
2022-07-22 14:57:39 +01:00
namespace {
using namespace Dynarmic;
2022-11-26 16:05:58 +00:00
bool ShouldTestInst(IR::Block& block) {
2022-07-22 14:57:39 +01:00
if (auto terminal = block.GetTerminal(); boost::get<IR::Term::Interpret>(&terminal)) {
return false;
}
for (const auto& ir_inst : block) {
switch (ir_inst.GetOpcode()) {
2022-11-26 16:05:58 +00:00
// A32
2022-08-02 01:03:17 +01:00
case IR::Opcode::A32GetFpscr:
2022-07-22 14:57:39 +01:00
case IR::Opcode::A32ExceptionRaised:
case IR::Opcode::A32CallSupervisor:
case IR::Opcode::A32CoprocInternalOperation:
case IR::Opcode::A32CoprocSendOneWord:
case IR::Opcode::A32CoprocSendTwoWords:
case IR::Opcode::A32CoprocGetOneWord:
case IR::Opcode::A32CoprocGetTwoWords:
case IR::Opcode::A32CoprocLoadWords:
case IR::Opcode::A32CoprocStoreWords:
2022-11-26 16:05:58 +00:00
// A64
case IR::Opcode::A64ExceptionRaised:
case IR::Opcode::A64CallSupervisor:
case IR::Opcode::A64DataCacheOperationRaised:
case IR::Opcode::A64GetCNTPCT:
// Unimplemented
case IR::Opcode::SignedSaturatedAdd8:
case IR::Opcode::SignedSaturatedAdd16:
case IR::Opcode::SignedSaturatedAdd32:
case IR::Opcode::SignedSaturatedAdd64:
case IR::Opcode::SignedSaturatedDoublingMultiplyReturnHigh16:
case IR::Opcode::SignedSaturatedDoublingMultiplyReturnHigh32:
case IR::Opcode::SignedSaturatedSub8:
case IR::Opcode::SignedSaturatedSub16:
case IR::Opcode::SignedSaturatedSub32:
case IR::Opcode::SignedSaturatedSub64:
case IR::Opcode::UnsignedSaturatedAdd8:
case IR::Opcode::UnsignedSaturatedAdd16:
case IR::Opcode::UnsignedSaturatedAdd32:
case IR::Opcode::UnsignedSaturatedAdd64:
case IR::Opcode::UnsignedSaturatedSub8:
case IR::Opcode::UnsignedSaturatedSub16:
case IR::Opcode::UnsignedSaturatedSub32:
case IR::Opcode::UnsignedSaturatedSub64:
case IR::Opcode::VectorMaxS64:
case IR::Opcode::VectorMaxU64:
case IR::Opcode::VectorMinS64:
case IR::Opcode::VectorMinU64:
case IR::Opcode::VectorMultiply64:
case IR::Opcode::SM4AccessSubstitutionBox:
// Half-prec conversions
case IR::Opcode::FPHalfToFixedS16:
case IR::Opcode::FPHalfToFixedS32:
case IR::Opcode::FPHalfToFixedS64:
case IR::Opcode::FPHalfToFixedU16:
case IR::Opcode::FPHalfToFixedU32:
case IR::Opcode::FPHalfToFixedU64:
2022-08-07 13:10:48 +01:00
// Half-precision
case IR::Opcode::FPAbs16:
case IR::Opcode::FPMulAdd16:
case IR::Opcode::FPNeg16:
case IR::Opcode::FPRecipEstimate16:
case IR::Opcode::FPRecipExponent16:
case IR::Opcode::FPRecipStepFused16:
case IR::Opcode::FPRoundInt16:
case IR::Opcode::FPRSqrtEstimate16:
case IR::Opcode::FPRSqrtStepFused16:
2022-08-07 13:10:48 +01:00
case IR::Opcode::FPVectorAbs16:
case IR::Opcode::FPVectorEqual16:
case IR::Opcode::FPVectorMulAdd16:
case IR::Opcode::FPVectorNeg16:
case IR::Opcode::FPVectorRecipEstimate16:
case IR::Opcode::FPVectorRecipStepFused16:
case IR::Opcode::FPVectorRoundInt16:
case IR::Opcode::FPVectorRSqrtEstimate16:
case IR::Opcode::FPVectorRSqrtStepFused16:
case IR::Opcode::FPVectorToSignedFixed16:
case IR::Opcode::FPVectorToUnsignedFixed16:
case IR::Opcode::FPVectorFromHalf32:
case IR::Opcode::FPVectorToHalf32:
2022-07-22 14:57:39 +01:00
return false;
default:
continue;
}
}
return true;
}
2022-11-26 16:05:58 +00:00
bool ShouldTestA32Inst(u32 instruction, u32 pc, bool is_thumb, bool is_last_inst, A32::ITState it_state = {}) {
const A32::LocationDescriptor location = A32::LocationDescriptor{pc, {}, {}}.SetTFlag(is_thumb).SetIT(it_state);
IR::Block block{location};
const bool should_continue = A32::TranslateSingleInstruction(block, location, instruction);
if (!should_continue && !is_last_inst) {
return false;
}
return ShouldTestInst(block);
}
bool ShouldTestA64Inst(u32 instruction, u32 pc, bool is_last_inst) {
const A64::LocationDescriptor location = A64::LocationDescriptor{pc, {}};
IR::Block block{location};
const bool should_continue = A64::TranslateSingleInstruction(block, location, instruction);
if (!should_continue && !is_last_inst) {
return false;
}
return ShouldTestInst(block);
}
u32 GenRandomArmInst(u32 pc, bool is_last_inst) {
static const struct InstructionGeneratorInfo {
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
} instructions = [] {
const std::vector<std::tuple<std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A32/decoder/arm.inc"
2022-08-07 13:10:48 +01:00
#include "dynarmic/frontend/A32/decoder/asimd.inc"
2022-08-02 01:03:17 +01:00
#include "dynarmic/frontend/A32/decoder/vfp.inc"
#undef INST
};
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
// List of instructions not to test
static constexpr std::array do_not_test{
// Translating load/stores
"arm_LDRBT", "arm_LDRBT", "arm_LDRHT", "arm_LDRHT", "arm_LDRSBT", "arm_LDRSBT", "arm_LDRSHT", "arm_LDRSHT", "arm_LDRT", "arm_LDRT",
"arm_STRBT", "arm_STRBT", "arm_STRHT", "arm_STRHT", "arm_STRT", "arm_STRT",
// Exclusive load/stores
"arm_LDREXB", "arm_LDREXD", "arm_LDREXH", "arm_LDREX", "arm_LDAEXB", "arm_LDAEXD", "arm_LDAEXH", "arm_LDAEX",
"arm_STREXB", "arm_STREXD", "arm_STREXH", "arm_STREX", "arm_STLEXB", "arm_STLEXD", "arm_STLEXH", "arm_STLEX",
"arm_SWP", "arm_SWPB",
// Elevated load/store multiple instructions.
"arm_LDM_eret", "arm_LDM_usr",
"arm_STM_usr",
// Coprocessor
"arm_CDP", "arm_LDC", "arm_MCR", "arm_MCRR", "arm_MRC", "arm_MRRC", "arm_STC",
// System
"arm_CPS", "arm_RFE", "arm_SRS",
// Undefined
"arm_UDF",
// FPSCR is inaccurate
"vfp_VMRS",
// Incorrect Unicorn implementations
"asimd_VRECPS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP.
"asimd_VRSQRTS", // Unicorn does not fuse the multiply and subtraction, resulting in being off by 1ULP.
"vfp_VCVT_from_fixed", // Unicorn does not do round-to-nearest-even for this instruction correctly.
};
for (const auto& [fn, bitstring] : list) {
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
invalid.emplace_back(InstructionGenerator{bitstring});
continue;
}
generators.emplace_back(InstructionGenerator{bitstring});
}
return InstructionGeneratorInfo{generators, invalid};
}();
while (true) {
const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1);
const u32 inst = instructions.generators[index].Generate();
if ((instructions.generators[index].Mask() & 0xF0000000) == 0 && (inst & 0xF0000000) == 0xF0000000) {
continue;
}
2022-11-26 16:05:58 +00:00
if (ShouldTestA32Inst(inst, pc, false, is_last_inst)) {
return inst;
}
}
}
2022-07-22 14:57:39 +01:00
std::vector<u16> GenRandomThumbInst(u32 pc, bool is_last_inst, A32::ITState it_state = {}) {
static const struct InstructionGeneratorInfo {
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
} instructions = [] {
const std::vector<std::tuple<std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A32/decoder/thumb16.inc"
#include "dynarmic/frontend/A32/decoder/thumb32.inc"
2022-07-22 14:57:39 +01:00
#undef INST
};
const std::vector<std::tuple<std::string, const char*>> vfp_list{
#define INST(fn, name, bitstring) {#fn, bitstring},
2022-08-02 01:03:17 +01:00
#include "dynarmic/frontend/A32/decoder/vfp.inc"
2022-07-22 14:57:39 +01:00
#undef INST
};
const std::vector<std::tuple<std::string, const char*>> asimd_list{
#define INST(fn, name, bitstring) {#fn, bitstring},
2022-08-07 13:10:48 +01:00
#include "dynarmic/frontend/A32/decoder/asimd.inc"
2022-07-22 14:57:39 +01:00
#undef INST
};
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
// List of instructions not to test
static constexpr std::array do_not_test{
"thumb16_BKPT",
"thumb16_IT",
// Exclusive load/stores
"thumb32_LDREX",
"thumb32_LDREXB",
"thumb32_LDREXD",
"thumb32_LDREXH",
"thumb32_STREX",
"thumb32_STREXB",
"thumb32_STREXD",
"thumb32_STREXH",
// Coprocessor
"thumb32_CDP",
"thumb32_LDC",
"thumb32_MCR",
"thumb32_MCRR",
"thumb32_MRC",
"thumb32_MRRC",
"thumb32_STC",
};
for (const auto& [fn, bitstring] : list) {
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
invalid.emplace_back(InstructionGenerator{bitstring});
continue;
}
generators.emplace_back(InstructionGenerator{bitstring});
}
for (const auto& [fn, bs] : vfp_list) {
std::string bitstring = bs;
if (bitstring.substr(0, 4) == "cccc" || bitstring.substr(0, 4) == "----") {
bitstring.replace(0, 4, "1110");
}
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
invalid.emplace_back(InstructionGenerator{bitstring.c_str()});
continue;
}
generators.emplace_back(InstructionGenerator{bitstring.c_str()});
}
for (const auto& [fn, bs] : asimd_list) {
std::string bitstring = bs;
if (bitstring.substr(0, 7) == "1111001") {
const char U = bitstring[7];
bitstring.replace(0, 8, "111-1111");
bitstring[3] = U;
} else if (bitstring.substr(0, 8) == "11110100") {
bitstring.replace(0, 8, "11111001");
} else {
ASSERT_FALSE("Unhandled ASIMD instruction: {} {}", fn, bs);
}
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
invalid.emplace_back(InstructionGenerator{bitstring.c_str()});
continue;
}
generators.emplace_back(InstructionGenerator{bitstring.c_str()});
}
return InstructionGeneratorInfo{generators, invalid};
}();
while (true) {
const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1);
const u32 inst = instructions.generators[index].Generate();
const bool is_four_bytes = (inst >> 16) != 0;
2022-11-26 16:05:58 +00:00
if (ShouldTestA32Inst(is_four_bytes ? mcl::bit::swap_halves_32(inst) : inst, pc, true, is_last_inst, it_state)) {
2022-07-22 14:57:39 +01:00
if (is_four_bytes)
return {static_cast<u16>(inst >> 16), static_cast<u16>(inst)};
return {static_cast<u16>(inst)};
}
}
}
2022-11-26 16:05:58 +00:00
u32 GenRandomA64Inst(u64 pc, bool is_last_inst) {
static const struct InstructionGeneratorInfo {
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
} instructions = [] {
const std::vector<std::tuple<std::string, const char*>> list{
#define INST(fn, name, bitstring) {#fn, bitstring},
#include "dynarmic/frontend/A64/decoder/a64.inc"
#undef INST
};
std::vector<InstructionGenerator> generators;
std::vector<InstructionGenerator> invalid;
// List of instructions not to test
const std::vector<std::string> do_not_test{
// Dynarmic and QEMU currently differ on how the exclusive monitor's address range works.
"STXR",
"STLXR",
"STXP",
"STLXP",
"LDXR",
"LDAXR",
"LDXP",
"LDAXP",
// Behaviour differs from QEMU
"MSR_reg",
"MSR_imm",
"MRS",
};
for (const auto& [fn, bitstring] : list) {
if (fn == "UnallocatedEncoding") {
continue;
}
if (std::find(do_not_test.begin(), do_not_test.end(), fn) != do_not_test.end()) {
invalid.emplace_back(InstructionGenerator{bitstring});
continue;
}
generators.emplace_back(InstructionGenerator{bitstring});
}
return InstructionGeneratorInfo{generators, invalid};
}();
while (true) {
const size_t index = RandInt<size_t>(0, instructions.generators.size() - 1);
const u32 inst = instructions.generators[index].Generate();
if (std::any_of(instructions.invalid.begin(), instructions.invalid.end(), [inst](const auto& invalid) { return invalid.Match(inst); })) {
continue;
}
if (ShouldTestA64Inst(inst, pc, is_last_inst)) {
return inst;
}
}
}
2022-07-22 14:57:39 +01:00
template<typename TestEnv>
2022-11-26 16:05:58 +00:00
Dynarmic::A32::UserConfig GetA32UserConfig(TestEnv& testenv) {
2022-07-22 14:57:39 +01:00
Dynarmic::A32::UserConfig user_config;
user_config.optimizations &= ~OptimizationFlag::FastDispatch;
user_config.callbacks = &testenv;
return user_config;
}
2022-11-08 21:39:53 +00:00
template<size_t num_jit_reruns = 1, typename TestEnv>
2022-11-26 16:05:58 +00:00
void RunTestInstance(Dynarmic::A32::Jit& jit,
TestEnv& jit_env,
const std::array<u32, 16>& regs,
const std::array<u32, 64>& vecs,
const std::vector<typename TestEnv::InstructionType>& instructions,
const u32 cpsr,
const u32 fpscr,
const size_t ticks_left) {
2022-07-22 14:57:39 +01:00
const u32 initial_pc = regs[15];
const u32 num_words = initial_pc / sizeof(typename TestEnv::InstructionType);
const u32 code_mem_size = num_words + static_cast<u32>(instructions.size());
2022-11-08 21:39:53 +00:00
jit.ClearCache();
2022-07-22 14:57:39 +01:00
2022-11-08 21:39:53 +00:00
for (size_t jit_rerun_count = 0; jit_rerun_count < num_jit_reruns; ++jit_rerun_count) {
jit_env.code_mem.resize(code_mem_size);
std::fill(jit_env.code_mem.begin(), jit_env.code_mem.end(), TestEnv::infinite_loop);
2022-07-22 14:57:39 +01:00
2022-11-08 21:39:53 +00:00
std::copy(instructions.begin(), instructions.end(), jit_env.code_mem.begin() + num_words);
jit_env.PadCodeMem();
jit_env.modified_memory.clear();
jit_env.interrupts.clear();
2022-07-22 14:57:39 +01:00
2022-11-08 21:39:53 +00:00
jit.Regs() = regs;
jit.ExtRegs() = vecs;
jit.SetFpscr(fpscr);
jit.SetCpsr(cpsr);
jit_env.ticks_left = ticks_left;
jit.Run();
}
2022-07-22 14:57:39 +01:00
2022-11-26 16:05:58 +00:00
fmt::print("instructions:");
2022-07-22 14:57:39 +01:00
for (auto instruction : instructions) {
if constexpr (sizeof(decltype(instruction)) == 2) {
2022-11-26 16:05:58 +00:00
fmt::print(" {:04x}", instruction);
2022-07-22 14:57:39 +01:00
} else {
2022-11-26 16:05:58 +00:00
fmt::print(" {:08x}", instruction);
2022-07-22 14:57:39 +01:00
}
}
fmt::print("\n");
2022-11-26 16:05:58 +00:00
fmt::print("initial_regs:");
2022-07-22 14:57:39 +01:00
for (u32 i : regs) {
2022-11-26 16:05:58 +00:00
fmt::print(" {:08x}", i);
2022-07-22 14:57:39 +01:00
}
fmt::print("\n");
2022-11-26 16:05:58 +00:00
fmt::print("initial_vecs:");
2022-07-22 14:57:39 +01:00
for (u32 i : vecs) {
2022-11-26 16:05:58 +00:00
fmt::print(" {:08x}", i);
2022-07-22 14:57:39 +01:00
}
fmt::print("\n");
fmt::print("initial_cpsr: {:08x}\n", cpsr);
fmt::print("initial_fpcr: {:08x}\n", fpscr);
2022-11-26 16:05:58 +00:00
fmt::print("final_regs:");
2022-07-22 14:57:39 +01:00
for (u32 i : jit.Regs()) {
2022-11-26 16:05:58 +00:00
fmt::print(" {:08x}", i);
2022-07-22 14:57:39 +01:00
}
fmt::print("\n");
2022-11-26 16:05:58 +00:00
fmt::print("final_vecs:");
2022-07-22 14:57:39 +01:00
for (u32 i : jit.ExtRegs()) {
2022-11-26 16:05:58 +00:00
fmt::print(" {:08x}", i);
2022-07-22 14:57:39 +01:00
}
fmt::print("\n");
fmt::print("final_cpsr: {:08x}\n", jit.Cpsr());
2022-08-02 00:36:42 +01:00
fmt::print("final_fpsr: {:08x}\n", mask_fpsr_cum_bits ? jit.Fpscr() & 0xffffff00 : jit.Fpscr());
2022-07-22 14:57:39 +01:00
fmt::print("mod_mem: ");
for (auto [addr, value] : jit_env.modified_memory) {
fmt::print("{:08x}:{:02x} ", addr, value);
}
fmt::print("\n");
fmt::print("interrupts:\n");
for (const auto& i : jit_env.interrupts) {
std::puts(i.c_str());
}
fmt::print("===\n");
}
2022-11-26 16:05:58 +00:00
Dynarmic::A64::UserConfig GetA64UserConfig(A64TestEnv& jit_env) {
Dynarmic::A64::UserConfig jit_user_config{&jit_env};
jit_user_config.optimizations &= ~OptimizationFlag::FastDispatch;
// The below corresponds to the settings for qemu's aarch64_max_initfn
jit_user_config.dczid_el0 = 7;
jit_user_config.ctr_el0 = 0x80038003;
return jit_user_config;
}
template<size_t num_jit_reruns = 1>
void RunTestInstance(Dynarmic::A64::Jit& jit,
A64TestEnv& jit_env,
const std::array<u64, 31>& regs,
const std::array<std::array<u64, 2>, 32>& vecs,
const std::vector<u32>& instructions,
const u32 pstate,
const u32 fpcr,
const u64 initial_sp,
const u64 start_address,
const size_t ticks_left) {
jit.ClearCache();
for (size_t jit_rerun_count = 0; jit_rerun_count < num_jit_reruns; ++jit_rerun_count) {
jit_env.code_mem = instructions;
jit_env.code_mem.emplace_back(0x14000000); // B .
jit_env.code_mem_start_address = start_address;
jit_env.modified_memory.clear();
jit_env.interrupts.clear();
jit.SetRegisters(regs);
jit.SetVectors(vecs);
jit.SetPC(start_address);
jit.SetSP(initial_sp);
jit.SetFpcr(fpcr);
jit.SetFpsr(0);
jit.SetPstate(pstate);
jit.ClearCache();
jit_env.ticks_left = ticks_left;
jit.Run();
}
fmt::print("instructions:");
for (u32 instruction : instructions) {
fmt::print(" {:08x}", instruction);
}
fmt::print("\n");
fmt::print("initial_regs:");
for (u64 i : regs) {
fmt::print(" {:016x}", i);
}
fmt::print("\n");
fmt::print("initial_vecs:");
for (auto i : vecs) {
fmt::print(" {:016x}:{:016x}", i[0], i[1]);
}
fmt::print("\n");
fmt::print("initial_sp: {:016x}\n", initial_sp);
fmt::print("initial_pstate: {:08x}\n", pstate);
fmt::print("initial_fpcr: {:08x}\n", fpcr);
fmt::print("final_regs:");
for (u64 i : jit.GetRegisters()) {
fmt::print(" {:016x}", i);
}
fmt::print("\n");
fmt::print("final_vecs:");
for (auto i : jit.GetVectors()) {
fmt::print(" {:016x}:{:016x}", i[0], i[1]);
}
fmt::print("\n");
fmt::print("final_sp: {:016x}\n", jit.GetSP());
fmt::print("final_pc: {:016x}\n", jit.GetPC());
fmt::print("final_pstate: {:08x}\n", jit.GetPstate());
fmt::print("final_fpcr: {:08x}\n", jit.GetFpcr());
fmt::print("final_qc : {}\n", FP::FPSR{jit.GetFpsr()}.QC());
fmt::print("mod_mem:");
for (auto [addr, value] : jit_env.modified_memory) {
fmt::print(" {:08x}:{:02x}", addr, value);
}
fmt::print("\n");
fmt::print("interrupts:\n");
for (const auto& i : jit_env.interrupts) {
std::puts(i.c_str());
}
fmt::print("===\n");
}
2022-07-22 14:57:39 +01:00
} // Anonymous namespace
void TestThumb(size_t num_instructions, size_t num_iterations) {
2022-07-22 14:57:39 +01:00
ThumbTestEnv jit_env{};
2022-11-26 16:05:58 +00:00
Dynarmic::A32::Jit jit{GetA32UserConfig(jit_env)};
2022-07-22 14:57:39 +01:00
std::array<u32, 16> regs;
std::array<u32, 64> ext_reg;
std::vector<u16> instructions;
for (size_t iteration = 0; iteration < num_iterations; ++iteration) {
2022-07-22 14:57:39 +01:00
std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });
const u32 start_address = 100;
const u32 cpsr = (RandInt<u32>(0, 0xF) << 28) | 0x1F0;
const u32 fpcr = RandomFpcr();
instructions.clear();
for (size_t i = 0; i < num_instructions; ++i) {
const auto inst = GenRandomThumbInst(static_cast<u32>(start_address + 2 * instructions.size()), i == num_instructions - 1);
instructions.insert(instructions.end(), inst.begin(), inst.end());
}
regs[15] = start_address;
RunTestInstance(jit, jit_env, regs, ext_reg, instructions, cpsr, fpcr, num_instructions);
}
}
2022-08-07 13:26:15 +01:00
void TestArm(size_t num_instructions, size_t num_iterations) {
ArmTestEnv jit_env{};
2022-11-26 16:05:58 +00:00
Dynarmic::A32::Jit jit{GetA32UserConfig(jit_env)};
std::array<u32, 16> regs;
std::array<u32, 64> ext_reg;
std::vector<u32> instructions;
for (size_t iteration = 0; iteration < num_iterations; ++iteration) {
std::generate(regs.begin(), regs.end(), [] { return RandInt<u32>(0, ~u32(0)); });
std::generate(ext_reg.begin(), ext_reg.end(), [] { return RandInt<u32>(0, ~u32(0)); });
const u32 start_address = 100;
const u32 cpsr = (RandInt<u32>(0, 0xF) << 28);
const u32 fpcr = RandomFpcr();
instructions.clear();
for (size_t i = 0; i < num_instructions; ++i) {
instructions.emplace_back(GenRandomArmInst(static_cast<u32>(start_address + 4 * instructions.size()), i == num_instructions - 1));
}
2022-07-22 14:57:39 +01:00
regs[15] = start_address;
2022-11-26 16:05:58 +00:00
RunTestInstance(jit, jit_env, regs, ext_reg, instructions, cpsr, fpcr, num_instructions);
}
}
void TestA64(size_t num_instructions, size_t num_iterations) {
A64TestEnv jit_env{};
Dynarmic::A64::Jit jit{GetA64UserConfig(jit_env)};
std::array<u64, 31> regs;
std::array<std::array<u64, 2>, 32> vecs;
std::vector<u32> instructions;
for (size_t iteration = 0; iteration < num_iterations; ++iteration) {
std::generate(regs.begin(), regs.end(), [] { return RandInt<u64>(0, ~u64(0)); });
std::generate(vecs.begin(), vecs.end(), RandomVector);
const u32 start_address = 100;
const u32 pstate = (RandInt<u32>(0, 0xF) << 28);
const u32 fpcr = RandomFpcr();
const u64 initial_sp = RandInt<u64>(0x30'0000'0000, 0x40'0000'0000) * 4;
instructions.clear();
for (size_t i = 0; i < num_instructions; ++i) {
instructions.emplace_back(GenRandomA64Inst(static_cast<u32>(start_address + 4 * instructions.size()), i == num_instructions - 1));
}
RunTestInstance(jit, jit_env, regs, vecs, instructions, pstate, fpcr, initial_sp, start_address, num_instructions);
2022-07-22 14:57:39 +01:00
}
}
int main(int, char*[]) {
detail::g_rand_int_generator.seed(42069);
2022-11-26 16:05:58 +00:00
TestThumb(1, 1);
TestArm(1, 1);
TestA64(1, 1);
2022-11-26 16:50:00 +00:00
TestA64(1, 10000);
// TestThumb(1, 100000);
// TestArm(1, 100000);
// TestThumb(5, 100000);
// TestArm(5, 100000);
// TestThumb(1024, 10000);
// TestArm(1024, 10000);
2022-07-22 14:57:39 +01:00
return 0;
}