dynarmic/xbyak/xbyak.h
Merry fdf626b74f Squashed 'externals/xbyak/' changes from a1ac3750f..2ce465bbc
2ce465bbc Merge branch 'dev'
0b3f360eb v7.05
66f22b7a4 update doc
13ee4e19f use opSetCC for setCC
383866b42 use opMR with APX
d6e6e6f85 tweak
a7b02ac80 RAO_INT supports APX
26840492c use Address.immSize
e2b40a33e refactor Address class
e1b6896c2 Merge branch 'dev'
c0888cc45 v7.04
7d9c82835 refactor rex
b3e27734b apx supports 0x0f opecode with rex2
2e7b62d78 bswap supports apx
2e93baa6a Merge branch 'dev'
e1864642c unify getMap and getMMM
0750873b7 T_MAP3 is not necessary
ee4984222 T_MAP1 is not necessary
5c95842be tweak
8c44467af add no_flags sample
523cf1ed0 fix comment of sample/ccmp.cpp
5438fc69d Merge branch 'dev'
ee26c094e v7.03
691ce361a [doc] update dfv
8d0e78146 set 0 for the default value of dfv
2255aea0d [doc] add ccmpSCC and ctestSCC
b5e115284 add sample/ccmp.cpp
bacd8d34b add sample/zero_upper.cpp
f17cb9d6b Merge branch 'dev'
c9ce3f8f6 v7.02
3427be298 unify opAESKL and opSHA
bfd14244a update doc
e690a2a47 sha* supports apx
c9765588f Merge branch 'dev'
903f7c02e v7.01
54a1f07f9 update cpuid by sde
223ddfaf8 add detection of sse4a/clwb
ba943b5b6 reorder cpu detection
30c362df5 Merge branch 'Sonicadvance1-missing_checks' into dev
02bc84ad8 renumber of tSSE4a, tCLWB
84fe3ab9d update doc
90fc0151c add encodekey{128,256}
440972b88 add detection of KEYLOCKER, KEYLOCKER_WIDE
68a30b91f add detection of AESKLE, WIDE_KL
e2d36c662 fix detection of AVX10
48551f5cc add aesenc{128,256}kl, aesencwide{128,256}kl
d9c7c992f add aesdecwide{128,256}kl
cd5231de0 add aesdec256kl
fcb3d0dbb add aesdec128kl
85709ace7 mvoe opKmov in private
406199e7a Support cpuid CLWB
1214aad95 Adds back missing SSE4a check
5315658ad add detection of avx10/apx_f
835f6d2e6 Merge pull request #180 from Tachi107/fix-32bit-tests
650b241e3 test: only run apx test when BIT=64
016ce86b6 [doc] add a blank line
df0ebc740 v7.00
1ec2adbbb Merge branch 'apx'
da1818592 update doc
bec145ba9 amx supports apx
944438195 add tests of kmov*
bd85d108c kmov* supports apx
93bd6a0b7 rename T_VEX to T_APX
b063d276f add misc tests
6d21c7389 add evex tests
05a66d2c0 support V4 in evex
33017d4fb support V4 in evex
e228e737d prepare evex extension of evex
45eca7987 update doc
98ce73bb2 add cfcmov tests
e2d9685af add cfcmov
a4ec97ca9 add tests of ctestscc
45711c502 add ctestscc
a1f6c14cc add alias of dfv
facb052a1 avoid r15 on 32-bit mode
c1c15848c remove warnings
be319626b add ccmpscc with imm
c4d05037e add ccmpscc
17f7d279c testing ccmpb
ff01b1e20 setcc supports apx
25ceea2ef add 3-op cmovcc
2f8cfb9a8 CMPccXADD supports APX
a9310deac add tests of push/pop
ec2881bfd push/pop support rex2
114152fed add push2/pop2
1aefdb649 support jmpabs
77eca6d0d add tests of 3-op shift
5e54ffdfa add 3-op shift
426814c50 check v instead of r
3f3d6095c disable rol/ror to support NF
ee572b7eb add tests of ror/rol
186d63ad9 add tests of shr/sar
26be71a12 2-op shl supports apx
83f5bd25e remove some warnings
e43d99762 add crc32 tests
92153b6f8 crc32 supports apx
d7ca6a2dd split T_F2 from T_66|T_F3
fb1fc738f tweak
389d73347 movbe supports apx and append test
3636cde22 tests of 1-byte opcode with rex2
1dd020126 check whether or not it is a 1-byte opcode
083822b52 movdiri supports apx
6703d4344 movdir64b supports apx
ed5dc3516 add tests of shld/shrd
b01c0ed40 shld/shrd support apx
c51c4a6f7 add tests of lzcnt and tzcnt
2cc22ea1b lzcnt and tzcnt support apx
baddec288 tweak
1d3a19a50 update doc of apx
273d8d5b6 add 3-op imul with T_zu
50875294c add tests of 2-op imul
d20142d01 add T_zu
eb9de1392 2-op imul supports apx
dba2c174f add 2op neg/not_
95ad5927f add tests of imul/mul/neg/not_ with 1-op
790afb745 add tests o idiv
045ef31a3 add tests of div
1d7e2a6bb div supports apx
e5fe58231 remove warning on 32-bit
66b3a3042 check all regs of NF
c7dba88df add dec test
f55f596ad add inc test
6f6423899 2-op inc/dec
95c0c4e6f tweak inc/dec
f5fda7ace change detection of pp with type
a18e5aeb5 rorx supports apx
5bb8461b4 blsmsk, blsr support apx
a493dc7b4 blsi supports apx
7c1accedc sarx/shlx/shrx support apx and add tests
125d8e740 test bzhi with apx
78be5afd1 add tests of bextr with apx
e9603b79d bextr supports apx
3a85aadc6 pdep, pext support apx
16f1a5d8a mulx supports apx
82529af93 andn supports APX
637ad7a4a add test of NF
e23f5ad75 fix type for adc
1bcc83303 3-op add supports T_nf
5d46b950b the type of all type is uint64_t
0a8ea9edf fix type
b1f0fef4d add test of 3op apx
9b21727ba remove space
6fa1b4a90 reorder of opRO
2d1f229a0 simplify condR
b220be972 simplify opRO
24b71a1ce use Reg instead of Operand if possible
de1353448 rename opGen with opSSE
4cd8e8eac refactor opGpr as opRRO
01d756917 rename
5037120f7 replace old rex with rexA
45fe94fdd rename opLoadSeg2 with opLoadSeg
253f800bc tweak
4f3939d92 rename opModM2 with opModM
fa731a27c rename opModR2 with opModR
e5db7d0e4 rename opModRM2 to opModRM
dc20fd09b use opModRM2
d4da1561b rename opR_ModM2 with opR_ModM
ef3665274 use opR_ModM2
e5b20e5a5 use opModM2
104941db2 use opModM2
6ae769f21 rename opROO2 with opROO
1521cb7ce rename opGen2 to opGen
f9c6cb5dc all opGen are replaced with opGen2
249d6978a use opGen2
81ae48922 use opGen2
b9e4bb2fc always put prefix as byte code
3374a158f use opGen2
719f81f45 use opGen2
8d037ebd6 use opGen2
6f8bc28e2 use opGen2
303876cac use opGen2
f0b49752a rewrite opMovXMM
5d4c48ffd rewrite opMMX
189c3488b use opMMX2
1361d0946 use opMMX2
32cafcc61 tweak
cf1cfd6c4 add temporary converting code
433bf29e3 replacing opModR with opModR2
ba1d07ed1 senduipi uses opModR2
646da9750 use opModR2 for rdrand, rdseed, movq
ccad6cecd use opModR2 for movdq2q, movq2dq
3c21754b9 use opModR2 for movd, movmskps
4718643ef use opModR2 for bswap, maskmovq, pmovmskb
e1a148707 try to use opModR2
220a5def7 split avx_type_def.h in gen/
87b8c8ed2 adox passes the test
bd8477292 fix detection of adox without apx
6b19515eb add adcx, adox with APX
77d6acea6 increase the room of type
710e39bfe add test of r, r/m
ea9cd9ade tweak
057f09c5b rename T_NF to T_nf
57a0c1935 support NF=1
8f49739da remove cmp of 3-op
e3310344c [doc] about APX
cdc2533c1 add test of adc/3op
9c6b81c4d return value on nothrow mode
8d524b4a4 add op(r, r/m, imm) and op(r, r/m, r/m)
4c62d1fdc test adc2(r, op, mem) and adc2(r, mem, op)
6f593a1cb test of adc2 (3op APX)
61addb9d9 simplify opMIB
575c447f1 remove rex2p
a95bd9cc5 add test of adc/add/and_/cmp/or_/sbb/sub/xor_
f7d3c17e8 tweak
d7a7ea912 refactoring rex
acd797139 use opModM instead of opMIB
ad3334ba6 add modRM with rex2
059d115b5 add test of apx.cpp
873c93a51 add test of regs of apx
e25b1cd62 [not tested] add(r1, r2) with rex2
eb118504d remove warning of VC
6c580b1f7 fix cvt test for extended r16-r31
981fa6f05 add r16 - r31
244623812 Merge branch 'dev'
aafe3cb62 build(cmake): bump minimum required to version 3.5
76d7477d7 Merge branch 'dev'
151c8ab04 v6.73
dd66cfb76 add tests of avx-vnni-int{8,16}
4a6132d66 update cpuid list
bea25541a add detection of AVX_VNNI_INT16
d9e76b1c6 add tests of SM4
e1c4c360b add SM4
d79717dbe add tests of SM3
48f8dbeb6 add SM3
5473d3933 vsha512* check regs
9b3687a68 add detection of SHA512, SM3, SM4
ecdd01ee5 mov crypt test in 64-bit mode
c4550b6a9 sde 9.24.0
5762819de add vsha512{msg1, msg2, rnds2}
3255d606a Merge branch 'dev'
322665e72 v6.72
ad178a219 add xabort/xbegin/xend
0924ff4aa Merge branch 'dev'
8980934c1 v6.71
76292b310 add SystemInfo class for win
3e42709ab ignore space and cr
66b2768a6 disable wrong detection of gcc
1855985e1 remove / for mingw64
5bdccc0b8 64bit only for mingw64
33882d0a0 use sysconf(_SC_PAGESIZE) instead of const value 4096 on linux
33075c2bd add link to other projects
60e71402e reorder
79854aa08 add new cpus
5921e270c update cpuid
ce083a0dc Merge branch 'dev'
b538485f3 v6.70
461dd34ee udpate doc
2149c79e3 add test of alias of vpclmulqdq
2c59c5c91 add alias of vpclmulqdq
729ae4aa3 fix alias of pclmulqdq
3c248d68a define XBYAK_CONSTEXPR if XBYAK_ONLY_CLASS_CPU is defined
c0a932d7b Merge remote-tracking branch 'origin/dev'
ef502b5b4 update doc
ba3db4730 update version
c0d7a704f v6.69.2
c535f4737 update cpuid test list
683249232 change the order of args of diff
e81b95583 Merge branch 'Wunkolo-constexpr-typet' into dev
ab3f40587 Allow constexpr TypeT `operator|`
ad5276fa4 Merge pull request #172 from orz--/patch-1
b4d54f6e1 Update changelog.md
58642e0cd Merge branch 'dev'
3b13d068b v6.69.1
d700f6c35 add detection of xsave
740dff2e8 Merge branch 'dev'
dc048a04c v6.69
ad0dfffd2 add senduipi/stui/testui/uiret
e78f1121b add clui
23b40331a add detection of uintr
98a0f1924 remove warning of sign/unsigned
0afd71a27 add detection of SERIALIZE
363bbaa57 sample shows cpu cache info for AMD
edce72709 Cpu supports AMD

git-subtree-dir: externals/xbyak
git-subtree-split: 2ce465bbca46e92dde9c44bbe7940fd7f70e3b97
2024-01-30 00:36:49 +00:00

3288 lines
112 KiB
C++

#pragma once
#ifndef XBYAK_XBYAK_H_
#define XBYAK_XBYAK_H_
/*!
@file xbyak.h
@brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++
@author herumi
@url https://github.com/herumi/xbyak
@note modified new BSD license
http://opensource.org/licenses/BSD-3-Clause
*/
#if (not +0) && !defined(XBYAK_NO_OP_NAMES) // trick to detect whether 'not' is operator or not
#define XBYAK_NO_OP_NAMES
#endif
#include <stdio.h> // for debug print
#include <assert.h>
#include <list>
#include <string>
#include <algorithm>
#ifndef NDEBUG
#include <iostream>
#endif
// #define XBYAK_DISABLE_AVX512
#if !defined(XBYAK_USE_MMAP_ALLOCATOR) && !defined(XBYAK_DONT_USE_MMAP_ALLOCATOR)
#define XBYAK_USE_MMAP_ALLOCATOR
#endif
#if !defined(__GNUC__) || defined(__MINGW32__)
#undef XBYAK_USE_MMAP_ALLOCATOR
#endif
#ifdef __GNUC__
#define XBYAK_GNUC_PREREQ(major, minor) ((__GNUC__) * 100 + (__GNUC_MINOR__) >= (major) * 100 + (minor))
#else
#define XBYAK_GNUC_PREREQ(major, minor) 0
#endif
// This covers -std=(gnu|c)++(0x|11|1y), -stdlib=libc++, and modern Microsoft.
#if ((defined(_MSC_VER) && (_MSC_VER >= 1600)) || defined(_LIBCPP_VERSION) ||\
((__cplusplus >= 201103) || defined(__GXX_EXPERIMENTAL_CXX0X__)))
#include <unordered_set>
#define XBYAK_STD_UNORDERED_SET std::unordered_set
#include <unordered_map>
#define XBYAK_STD_UNORDERED_MAP std::unordered_map
#define XBYAK_STD_UNORDERED_MULTIMAP std::unordered_multimap
/*
Clang/llvm-gcc and ICC-EDG in 'GCC-mode' always claim to be GCC 4.2, using
libstdcxx 20070719 (from GCC 4.2.1, the last GPL 2 version).
*/
#elif XBYAK_GNUC_PREREQ(4, 5) || (XBYAK_GNUC_PREREQ(4, 2) && __GLIBCXX__ >= 20070719) || defined(__INTEL_COMPILER) || defined(__llvm__)
#include <tr1/unordered_set>
#define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set
#include <tr1/unordered_map>
#define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map
#define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap
#elif defined(_MSC_VER) && (_MSC_VER >= 1500) && (_MSC_VER < 1600)
#include <unordered_set>
#define XBYAK_STD_UNORDERED_SET std::tr1::unordered_set
#include <unordered_map>
#define XBYAK_STD_UNORDERED_MAP std::tr1::unordered_map
#define XBYAK_STD_UNORDERED_MULTIMAP std::tr1::unordered_multimap
#else
#include <set>
#define XBYAK_STD_UNORDERED_SET std::set
#include <map>
#define XBYAK_STD_UNORDERED_MAP std::map
#define XBYAK_STD_UNORDERED_MULTIMAP std::multimap
#endif
#ifdef _WIN32
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#include <malloc.h>
#ifdef _MSC_VER
#define XBYAK_TLS __declspec(thread)
#else
#define XBYAK_TLS __thread
#endif
#elif defined(__GNUC__)
#include <unistd.h>
#include <sys/mman.h>
#include <stdlib.h>
#define XBYAK_TLS __thread
#endif
#if defined(__APPLE__) && !defined(XBYAK_DONT_USE_MAP_JIT)
#define XBYAK_USE_MAP_JIT
#include <sys/sysctl.h>
#ifndef MAP_JIT
#define MAP_JIT 0x800
#endif
#endif
#if !defined(_MSC_VER) || (_MSC_VER >= 1600)
#include <stdint.h>
#endif
// MFD_CLOEXEC defined only linux 3.17 or later.
// Android wraps the memfd_create syscall from API version 30.
#if !defined(MFD_CLOEXEC) || (defined(__ANDROID__) && __ANDROID_API__ < 30)
#undef XBYAK_USE_MEMFD
#endif
#if defined(_WIN64) || defined(__MINGW64__) || (defined(__CYGWIN__) && defined(__x86_64__))
#define XBYAK64_WIN
#elif defined(__x86_64__)
#define XBYAK64_GCC
#endif
#if !defined(XBYAK64) && !defined(XBYAK32)
#if defined(XBYAK64_GCC) || defined(XBYAK64_WIN)
#define XBYAK64
#else
#define XBYAK32
#endif
#endif
#if (__cplusplus >= 201103) || (defined(_MSC_VER) && _MSC_VER >= 1900)
#undef XBYAK_TLS
#define XBYAK_TLS thread_local
#define XBYAK_VARIADIC_TEMPLATE
#define XBYAK_NOEXCEPT noexcept
#else
#define XBYAK_NOEXCEPT throw()
#endif
// require c++14 or later
// Visual Studio 2017 version 15.0 or later
// g++-6 or later
#if ((__cplusplus >= 201402L) && !(!defined(__clang__) && defined(__GNUC__) && (__GNUC__ <= 5))) || (defined(_MSC_VER) && _MSC_VER >= 1910)
#define XBYAK_CONSTEXPR constexpr
#else
#define XBYAK_CONSTEXPR
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4514) /* remove inline function */
#pragma warning(disable : 4786) /* identifier is too long */
#pragma warning(disable : 4503) /* name is too long */
#pragma warning(disable : 4127) /* constant expresison */
#endif
// disable -Warray-bounds because it may be a bug of gcc. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104603
#if defined(__GNUC__) && !defined(__clang__)
#define XBYAK_DISABLE_WARNING_ARRAY_BOUNDS
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
namespace Xbyak {
enum {
DEFAULT_MAX_CODE_SIZE = 4096,
VERSION = 0x7050 /* 0xABCD = A.BC(.D) */
};
#ifndef MIE_INTEGER_TYPE_DEFINED
#define MIE_INTEGER_TYPE_DEFINED
// for backward compatibility
typedef uint64_t uint64;
typedef int64_t sint64;
typedef uint32_t uint32;
typedef uint16_t uint16;
typedef uint8_t uint8;
#endif
#ifndef MIE_ALIGN
#ifdef _MSC_VER
#define MIE_ALIGN(x) __declspec(align(x))
#else
#define MIE_ALIGN(x) __attribute__((aligned(x)))
#endif
#endif
#ifndef MIE_PACK // for shufps
#define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w))
#endif
enum {
ERR_NONE = 0,
ERR_BAD_ADDRESSING,
ERR_CODE_IS_TOO_BIG,
ERR_BAD_SCALE,
ERR_ESP_CANT_BE_INDEX,
ERR_BAD_COMBINATION,
ERR_BAD_SIZE_OF_REGISTER,
ERR_IMM_IS_TOO_BIG,
ERR_BAD_ALIGN,
ERR_LABEL_IS_REDEFINED,
ERR_LABEL_IS_TOO_FAR,
ERR_LABEL_IS_NOT_FOUND,
ERR_CODE_ISNOT_COPYABLE,
ERR_BAD_PARAMETER,
ERR_CANT_PROTECT,
ERR_CANT_USE_64BIT_DISP,
ERR_OFFSET_IS_TOO_BIG,
ERR_MEM_SIZE_IS_NOT_SPECIFIED,
ERR_BAD_MEM_SIZE,
ERR_BAD_ST_COMBINATION,
ERR_OVER_LOCAL_LABEL, // not used
ERR_UNDER_LOCAL_LABEL,
ERR_CANT_ALLOC,
ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW,
ERR_BAD_PROTECT_MODE,
ERR_BAD_PNUM,
ERR_BAD_TNUM,
ERR_BAD_VSIB_ADDRESSING,
ERR_CANT_CONVERT,
ERR_LABEL_ISNOT_SET_BY_L,
ERR_LABEL_IS_ALREADY_SET_BY_L,
ERR_BAD_LABEL_STR,
ERR_MUNMAP,
ERR_OPMASK_IS_ALREADY_SET,
ERR_ROUNDING_IS_ALREADY_SET,
ERR_K0_IS_INVALID,
ERR_EVEX_IS_INVALID,
ERR_SAE_IS_INVALID,
ERR_ER_IS_INVALID,
ERR_INVALID_BROADCAST,
ERR_INVALID_OPMASK_WITH_MEMORY,
ERR_INVALID_ZERO,
ERR_INVALID_RIP_IN_AUTO_GROW,
ERR_INVALID_MIB_ADDRESS,
ERR_X2APIC_IS_NOT_SUPPORTED,
ERR_NOT_SUPPORTED,
ERR_SAME_REGS_ARE_INVALID,
ERR_INVALID_NF,
ERR_INVALID_ZU,
ERR_CANT_USE_REX2,
ERR_INVALID_DFV,
ERR_INVALID_REG_IDX,
ERR_INTERNAL // Put it at last.
};
inline const char *ConvertErrorToString(int err)
{
static const char *errTbl[] = {
"none",
"bad addressing",
"code is too big",
"bad scale",
"esp can't be index",
"bad combination",
"bad size of register",
"imm is too big",
"bad align",
"label is redefined",
"label is too far",
"label is not found",
"code is not copyable",
"bad parameter",
"can't protect",
"can't use 64bit disp(use (void*))",
"offset is too big",
"MEM size is not specified",
"bad mem size",
"bad st combination",
"over local label",
"under local label",
"can't alloc",
"T_SHORT is not supported in AutoGrow",
"bad protect mode",
"bad pNum",
"bad tNum",
"bad vsib addressing",
"can't convert",
"label is not set by L()",
"label is already set by L()",
"bad label string",
"err munmap",
"opmask is already set",
"rounding is already set",
"k0 is invalid",
"evex is invalid",
"sae(suppress all exceptions) is invalid",
"er(embedded rounding) is invalid",
"invalid broadcast",
"invalid opmask with memory",
"invalid zero",
"invalid rip in AutoGrow",
"invalid mib address",
"x2APIC is not supported",
"not supported",
"same regs are invalid",
"invalid NF",
"invalid ZU",
"can't use rex2",
"invalid dfv",
"invalid reg index",
"internal error"
};
assert(ERR_INTERNAL + 1 == sizeof(errTbl) / sizeof(*errTbl));
return err <= ERR_INTERNAL ? errTbl[err] : "unknown err";
}
#ifdef XBYAK_NO_EXCEPTION
namespace local {
inline int& GetErrorRef() {
static XBYAK_TLS int err = 0;
return err;
}
inline void SetError(int err) {
if (local::GetErrorRef()) return; // keep the first err code
local::GetErrorRef() = err;
}
} // local
inline void ClearError() {
local::GetErrorRef() = 0;
}
inline int GetError() { return Xbyak::local::GetErrorRef(); }
#define XBYAK_THROW(err) { Xbyak::local::SetError(err); return; }
#define XBYAK_THROW_RET(err, r) { Xbyak::local::SetError(err); return r; }
#else
class Error : public std::exception {
int err_;
public:
explicit Error(int err) : err_(err)
{
if (err_ < 0 || err_ > ERR_INTERNAL) {
err_ = ERR_INTERNAL;
}
}
operator int() const { return err_; }
const char *what() const XBYAK_NOEXCEPT
{
return ConvertErrorToString(err_);
}
};
// dummy functions
inline void ClearError() { }
inline int GetError() { return 0; }
inline const char *ConvertErrorToString(const Error& err)
{
return err.what();
}
#define XBYAK_THROW(err) { throw Error(err); }
#define XBYAK_THROW_RET(err, r) { throw Error(err); }
#endif
inline void *AlignedMalloc(size_t size, size_t alignment)
{
#ifdef __MINGW32__
return __mingw_aligned_malloc(size, alignment);
#elif defined(_WIN32)
return _aligned_malloc(size, alignment);
#else
void *p;
int ret = posix_memalign(&p, alignment, size);
return (ret == 0) ? p : 0;
#endif
}
inline void AlignedFree(void *p)
{
#ifdef __MINGW32__
__mingw_aligned_free(p);
#elif defined(_MSC_VER)
_aligned_free(p);
#else
free(p);
#endif
}
template<class To, class From>
inline const To CastTo(From p) XBYAK_NOEXCEPT
{
return (const To)(size_t)(p);
}
namespace inner {
#ifdef _WIN32
struct SystemInfo {
SYSTEM_INFO info;
SystemInfo()
{
GetSystemInfo(&info);
}
};
#endif
//static const size_t ALIGN_PAGE_SIZE = 4096;
inline size_t getPageSize()
{
#ifdef _WIN32
static const SystemInfo si;
return si.info.dwPageSize;
#else
#ifdef __GNUC__
static const long pageSize = sysconf(_SC_PAGESIZE);
if (pageSize > 0) {
return (size_t)pageSize;
}
#endif
return 4096;
#endif
}
inline bool IsInDisp8(uint32_t x) { return 0xFFFFFF80 <= x || x <= 0x7F; }
inline bool IsInInt32(uint64_t x) { return ~uint64_t(0x7fffffffu) <= x || x <= 0x7FFFFFFFU; }
inline uint32_t VerifyInInt32(uint64_t x)
{
#if defined(XBYAK64) && !defined(__ILP32__)
if (!IsInInt32(x)) XBYAK_THROW_RET(ERR_OFFSET_IS_TOO_BIG, 0)
#endif
return static_cast<uint32_t>(x);
}
enum LabelMode {
LasIs, // as is
Labs, // absolute
LaddTop // (addr + top) for mov(reg, label) with AutoGrow
};
} // inner
/*
custom allocator
*/
struct Allocator {
explicit Allocator(const std::string& = "") {} // same interface with MmapAllocator
virtual uint8_t *alloc(size_t size) { return reinterpret_cast<uint8_t*>(AlignedMalloc(size, inner::getPageSize())); }
virtual void free(uint8_t *p) { AlignedFree(p); }
virtual ~Allocator() {}
/* override to return false if you call protect() manually */
virtual bool useProtect() const { return true; }
};
#ifdef XBYAK_USE_MMAP_ALLOCATOR
#ifdef XBYAK_USE_MAP_JIT
namespace util {
inline int getMacOsVersionPure()
{
char buf[64];
size_t size = sizeof(buf);
int err = sysctlbyname("kern.osrelease", buf, &size, NULL, 0);
if (err != 0) return 0;
char *endp;
int major = strtol(buf, &endp, 10);
if (*endp != '.') return 0;
return major;
}
inline int getMacOsVersion()
{
static const int version = getMacOsVersionPure();
return version;
}
} // util
#endif
class MmapAllocator : public Allocator {
struct Allocation {
size_t size;
#if defined(XBYAK_USE_MEMFD)
// fd_ is only used with XBYAK_USE_MEMFD. We keep the file open
// during the lifetime of each allocation in order to support
// checkpoint/restore by unprivileged users.
int fd;
#endif
};
const std::string name_; // only used with XBYAK_USE_MEMFD
typedef XBYAK_STD_UNORDERED_MAP<uintptr_t, Allocation> AllocationList;
AllocationList allocList_;
public:
explicit MmapAllocator(const std::string& name = "xbyak") : name_(name) {}
uint8_t *alloc(size_t size)
{
const size_t alignedSizeM1 = inner::getPageSize() - 1;
size = (size + alignedSizeM1) & ~alignedSizeM1;
#if defined(MAP_ANONYMOUS)
int mode = MAP_PRIVATE | MAP_ANONYMOUS;
#elif defined(MAP_ANON)
int mode = MAP_PRIVATE | MAP_ANON;
#else
#error "not supported"
#endif
#if defined(XBYAK_USE_MAP_JIT)
const int mojaveVersion = 18;
if (util::getMacOsVersion() >= mojaveVersion) mode |= MAP_JIT;
#endif
int fd = -1;
#if defined(XBYAK_USE_MEMFD)
fd = memfd_create(name_.c_str(), MFD_CLOEXEC);
if (fd != -1) {
mode = MAP_SHARED;
if (ftruncate(fd, size) != 0) {
close(fd);
XBYAK_THROW_RET(ERR_CANT_ALLOC, 0)
}
}
#endif
void *p = mmap(NULL, size, PROT_READ | PROT_WRITE, mode, fd, 0);
if (p == MAP_FAILED) {
if (fd != -1) close(fd);
XBYAK_THROW_RET(ERR_CANT_ALLOC, 0)
}
assert(p);
Allocation &alloc = allocList_[(uintptr_t)p];
alloc.size = size;
#if defined(XBYAK_USE_MEMFD)
alloc.fd = fd;
#endif
return (uint8_t*)p;
}
void free(uint8_t *p)
{
if (p == 0) return;
AllocationList::iterator i = allocList_.find((uintptr_t)p);
if (i == allocList_.end()) XBYAK_THROW(ERR_BAD_PARAMETER)
if (munmap((void*)i->first, i->second.size) < 0) XBYAK_THROW(ERR_MUNMAP)
#if defined(XBYAK_USE_MEMFD)
if (i->second.fd != -1) close(i->second.fd);
#endif
allocList_.erase(i);
}
};
#else
typedef Allocator MmapAllocator;
#endif
class Address;
class Reg;
struct ApxFlagNF {};
struct ApxFlagZU {};
// dfv (default flags value) is or operation of these flags
static const int T_of = 8;
static const int T_sf = 4;
static const int T_zf = 2;
static const int T_cf = 1;
class Operand {
static const uint8_t EXT8BIT = 0x20;
unsigned int idx_:6; // 0..31 + EXT8BIT = 1 if spl/bpl/sil/dil
unsigned int kind_:10;
unsigned int bit_:14;
protected:
unsigned int zero_:1;
unsigned int mask_:3;
unsigned int rounding_:3;
unsigned int NF_:1;
unsigned int ZU_:1; // ND=ZU
void setIdx(int idx) { idx_ = idx; }
public:
enum Kind {
NONE = 0,
MEM = 1 << 0,
REG = 1 << 1,
MMX = 1 << 2,
FPU = 1 << 3,
XMM = 1 << 4,
YMM = 1 << 5,
ZMM = 1 << 6,
OPMASK = 1 << 7,
BNDREG = 1 << 8,
TMM = 1 << 9
};
enum Code {
#ifdef XBYAK64
RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15,
R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31,
R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D,
R16D, R17D, R18D, R19D, R20D, R21D, R22D, R23D, R24D, R25D, R26D, R27D, R28D, R29D, R30D, R31D,
R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W,
R16W, R17W, R18W, R19W, R20W, R21W, R22W, R23W, R24W, R25W, R26W, R27W, R28W, R29W, R30W, R31W,
R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B,
R16B, R17B, R18B, R19B, R20B, R21B, R22B, R23B, R24B, R25B, R26B, R27B, R28B, R29B, R30B, R31B,
SPL = 4, BPL, SIL, DIL,
#endif
EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI,
AX = 0, CX, DX, BX, SP, BP, SI, DI,
AL = 0, CL, DL, BL, AH, CH, DH, BH
};
XBYAK_CONSTEXPR Operand() : idx_(0), kind_(0), bit_(0), zero_(0), mask_(0), rounding_(0), NF_(0), ZU_(0) { }
XBYAK_CONSTEXPR Operand(int idx, Kind kind, int bit, bool ext8bit = 0)
: idx_(static_cast<uint8_t>(idx | (ext8bit ? EXT8BIT : 0)))
, kind_(kind)
, bit_(bit)
, zero_(0), mask_(0), rounding_(0), NF_(0), ZU_(0)
{
assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two
}
XBYAK_CONSTEXPR Kind getKind() const { return static_cast<Kind>(kind_); }
XBYAK_CONSTEXPR int getIdx() const { return idx_ & (EXT8BIT - 1); }
XBYAK_CONSTEXPR bool hasIdxBit(int bit) const { return idx_ & (1<<bit); }
XBYAK_CONSTEXPR bool isNone() const { return kind_ == 0; }
XBYAK_CONSTEXPR bool isMMX() const { return is(MMX); }
XBYAK_CONSTEXPR bool isXMM() const { return is(XMM); }
XBYAK_CONSTEXPR bool isYMM() const { return is(YMM); }
XBYAK_CONSTEXPR bool isZMM() const { return is(ZMM); }
XBYAK_CONSTEXPR bool isSIMD() const { return is(XMM|YMM|ZMM); }
XBYAK_CONSTEXPR bool isTMM() const { return is(TMM); }
XBYAK_CONSTEXPR bool isXMEM() const { return is(XMM | MEM); }
XBYAK_CONSTEXPR bool isYMEM() const { return is(YMM | MEM); }
XBYAK_CONSTEXPR bool isZMEM() const { return is(ZMM | MEM); }
XBYAK_CONSTEXPR bool isOPMASK() const { return is(OPMASK); }
XBYAK_CONSTEXPR bool isBNDREG() const { return is(BNDREG); }
XBYAK_CONSTEXPR bool isREG(int bit = 0) const { return is(REG, bit); }
XBYAK_CONSTEXPR bool isMEM(int bit = 0) const { return is(MEM, bit); }
XBYAK_CONSTEXPR bool isFPU() const { return is(FPU); }
XBYAK_CONSTEXPR bool isExt8bit() const { return (idx_ & EXT8BIT) != 0; }
XBYAK_CONSTEXPR bool isExtIdx() const { return (getIdx() & 8) != 0; }
XBYAK_CONSTEXPR bool isExtIdx2() const { return (getIdx() & 16) != 0; }
XBYAK_CONSTEXPR bool hasEvex() const { return isZMM() || isExtIdx2() || getOpmaskIdx() || getRounding(); }
XBYAK_CONSTEXPR bool hasRex() const { return isExt8bit() || isREG(64) || isExtIdx(); }
XBYAK_CONSTEXPR bool hasRex2() const;
XBYAK_CONSTEXPR bool hasRex2NF() const { return hasRex2() || NF_; }
XBYAK_CONSTEXPR bool hasRex2NFZU() const { return hasRex2() || NF_ || ZU_; }
XBYAK_CONSTEXPR bool hasZero() const { return zero_; }
XBYAK_CONSTEXPR int getOpmaskIdx() const { return mask_; }
XBYAK_CONSTEXPR int getRounding() const { return rounding_; }
void setKind(Kind kind)
{
if ((kind & (XMM|YMM|ZMM|TMM)) == 0) return;
kind_ = kind;
bit_ = kind == XMM ? 128 : kind == YMM ? 256 : kind == ZMM ? 512 : 8192;
}
// err if MMX/FPU/OPMASK/BNDREG
void setBit(int bit);
void setOpmaskIdx(int idx, bool /*ignore_idx0*/ = true)
{
if (mask_) XBYAK_THROW(ERR_OPMASK_IS_ALREADY_SET)
mask_ = idx;
}
void setRounding(int idx)
{
if (rounding_) XBYAK_THROW(ERR_ROUNDING_IS_ALREADY_SET)
rounding_ = idx;
}
void setZero() { zero_ = true; }
void setNF() { NF_ = true; }
int getNF() const { return NF_; }
void setZU() { ZU_ = true; }
int getZU() const { return ZU_; }
// ah, ch, dh, bh?
bool isHigh8bit() const
{
if (!isBit(8)) return false;
if (isExt8bit()) return false;
const int idx = getIdx();
return AH <= idx && idx <= BH;
}
// any bit is accetable if bit == 0
XBYAK_CONSTEXPR bool is(int kind, uint32_t bit = 0) const
{
return (kind == 0 || (kind_ & kind)) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16)
}
XBYAK_CONSTEXPR bool isBit(uint32_t bit) const { return (bit_ & bit) != 0; }
XBYAK_CONSTEXPR uint32_t getBit() const { return bit_; }
const char *toString() const
{
const int idx = getIdx();
if (kind_ == REG) {
if (isExt8bit()) {
static const char *tbl[4] = { "spl", "bpl", "sil", "dil" };
return tbl[idx - 4];
}
static const char *tbl[4][32] = {
{ "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b",
"r16b", "r17b", "r18b", "r19b", "r20b", "r21b", "r22b", "r23b", "r24b", "r25b", "r26b", "r27b", "r28b", "r29b", "r30b", "r31b",
},
{ "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w",
"r16w", "r17w", "r18w", "r19w", "r20w", "r21w", "r22w", "r23w", "r24w", "r25w", "r26w", "r27w", "r28w", "r29w", "r30w", "r31w",
},
{ "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
"r16d", "r17d", "r18d", "r19d", "r20d", "r21d", "r22d", "r23d", "r24d", "r25d", "r26d", "r27d", "r28d", "r29d", "r30d", "r31d",
},
{ "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
},
};
return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx];
} else if (isOPMASK()) {
static const char *tbl[8] = { "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7" };
return tbl[idx];
} else if (isTMM()) {
static const char *tbl[8] = {
"tmm0", "tmm1", "tmm2", "tmm3", "tmm4", "tmm5", "tmm6", "tmm7"
};
return tbl[idx];
} else if (isZMM()) {
static const char *tbl[32] = {
"zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15",
"zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31"
};
return tbl[idx];
} else if (isYMM()) {
static const char *tbl[32] = {
"ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15",
"ymm16", "ymm17", "ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25", "ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31"
};
return tbl[idx];
} else if (isXMM()) {
static const char *tbl[32] = {
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
"xmm16", "xmm17", "xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25", "xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31"
};
return tbl[idx];
} else if (isMMX()) {
static const char *tbl[8] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" };
return tbl[idx];
} else if (isFPU()) {
static const char *tbl[8] = { "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7" };
return tbl[idx];
} else if (isBNDREG()) {
static const char *tbl[4] = { "bnd0", "bnd1", "bnd2", "bnd3" };
return tbl[idx];
}
XBYAK_THROW_RET(ERR_INTERNAL, 0);
}
bool isEqualIfNotInherited(const Operand& rhs) const { return idx_ == rhs.idx_ && kind_ == rhs.kind_ && bit_ == rhs.bit_ && zero_ == rhs.zero_ && mask_ == rhs.mask_ && rounding_ == rhs.rounding_; }
bool operator==(const Operand& rhs) const;
bool operator!=(const Operand& rhs) const { return !operator==(rhs); }
const Address& getAddress() const;
Address getAddress(int immSize) const;
const Reg& getReg() const;
};
inline void Operand::setBit(int bit)
{
if (bit != 8 && bit != 16 && bit != 32 && bit != 64 && bit != 128 && bit != 256 && bit != 512 && bit != 8192) goto ERR;
if (isBit(bit)) return;
if (is(MEM | OPMASK)) {
bit_ = bit;
return;
}
if (is(REG | XMM | YMM | ZMM | TMM)) {
int idx = getIdx();
// err if converting ah, bh, ch, dh
if (isREG(8) && (4 <= idx && idx < 8) && !isExt8bit()) goto ERR;
Kind kind = REG;
switch (bit) {
case 8:
#ifdef XBYAK32
if (idx >= 4) goto ERR;
#else
if (idx >= 32) goto ERR;
if (4 <= idx && idx < 8) idx |= EXT8BIT;
#endif
break;
case 16:
case 32:
case 64:
#ifdef XBYAK32
if (idx >= 16) goto ERR;
#else
if (idx >= 32) goto ERR;
#endif
break;
case 128: kind = XMM; break;
case 256: kind = YMM; break;
case 512: kind = ZMM; break;
case 8192: kind = TMM; break;
}
idx_ = idx;
kind_ = kind;
bit_ = bit;
if (bit >= 128) return; // keep mask_ and rounding_
mask_ = 0;
rounding_ = 0;
return;
}
ERR:
XBYAK_THROW(ERR_CANT_CONVERT)
}
class Label;
struct Reg8;
struct Reg16;
struct Reg32;
#ifdef XBYAK64
struct Reg64;
#endif
class Reg : public Operand {
public:
XBYAK_CONSTEXPR Reg() { }
XBYAK_CONSTEXPR Reg(int idx, Kind kind, int bit = 0, bool ext8bit = false) : Operand(idx, kind, bit, ext8bit) { }
// convert to Reg8/Reg16/Reg32/Reg64/XMM/YMM/ZMM
Reg changeBit(int bit) const { Reg r(*this); r.setBit(bit); return r; }
Reg8 cvt8() const;
Reg16 cvt16() const;
Reg32 cvt32() const;
#ifdef XBYAK64
Reg64 cvt64() const;
#endif
Reg operator|(const ApxFlagNF&) const { Reg r(*this); r.setNF(); return r; }
Reg operator|(const ApxFlagZU&) const { Reg r(*this); r.setZU(); return r; }
};
inline const Reg& Operand::getReg() const
{
assert(!isMEM());
return static_cast<const Reg&>(*this);
}
struct Reg8 : public Reg {
explicit XBYAK_CONSTEXPR Reg8(int idx = 0, bool ext8bit = false) : Reg(idx, Operand::REG, 8, ext8bit) { }
};
struct Reg16 : public Reg {
explicit XBYAK_CONSTEXPR Reg16(int idx = 0) : Reg(idx, Operand::REG, 16) { }
};
struct Mmx : public Reg {
explicit XBYAK_CONSTEXPR Mmx(int idx = 0, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { }
};
struct EvexModifierRounding {
enum {
T_RN_SAE = 1,
T_RD_SAE = 2,
T_RU_SAE = 3,
T_RZ_SAE = 4,
T_SAE = 5
};
explicit XBYAK_CONSTEXPR EvexModifierRounding(int rounding) : rounding(rounding) {}
int rounding;
};
struct EvexModifierZero{ XBYAK_CONSTEXPR EvexModifierZero() {}};
struct Xmm : public Mmx {
explicit XBYAK_CONSTEXPR Xmm(int idx = 0, Kind kind = Operand::XMM, int bit = 128) : Mmx(idx, kind, bit) { }
XBYAK_CONSTEXPR Xmm(Kind kind, int idx) : Mmx(idx, kind, kind == XMM ? 128 : kind == YMM ? 256 : 512) { }
Xmm operator|(const EvexModifierRounding& emr) const { Xmm r(*this); r.setRounding(emr.rounding); return r; }
Xmm copyAndSetIdx(int idx) const { Xmm ret(*this); ret.setIdx(idx); return ret; }
Xmm copyAndSetKind(Operand::Kind kind) const { Xmm ret(*this); ret.setKind(kind); return ret; }
};
struct Ymm : public Xmm {
explicit XBYAK_CONSTEXPR Ymm(int idx = 0, Kind kind = Operand::YMM, int bit = 256) : Xmm(idx, kind, bit) { }
Ymm operator|(const EvexModifierRounding& emr) const { Ymm r(*this); r.setRounding(emr.rounding); return r; }
};
struct Zmm : public Ymm {
explicit XBYAK_CONSTEXPR Zmm(int idx = 0) : Ymm(idx, Operand::ZMM, 512) { }
Zmm operator|(const EvexModifierRounding& emr) const { Zmm r(*this); r.setRounding(emr.rounding); return r; }
};
#ifdef XBYAK64
struct Tmm : public Reg {
explicit XBYAK_CONSTEXPR Tmm(int idx = 0, Kind kind = Operand::TMM, int bit = 8192) : Reg(idx, kind, bit) { }
};
#endif
struct Opmask : public Reg {
explicit XBYAK_CONSTEXPR Opmask(int idx = 0) : Reg(idx, Operand::OPMASK, 64) {}
};
struct BoundsReg : public Reg {
explicit XBYAK_CONSTEXPR BoundsReg(int idx = 0) : Reg(idx, Operand::BNDREG, 128) {}
};
template<class T>T operator|(const T& x, const Opmask& k) { T r(x); r.setOpmaskIdx(k.getIdx()); return r; }
template<class T>T operator|(const T& x, const EvexModifierZero&) { T r(x); r.setZero(); return r; }
template<class T>T operator|(const T& x, const EvexModifierRounding& emr) { T r(x); r.setRounding(emr.rounding); return r; }
struct Fpu : public Reg {
explicit XBYAK_CONSTEXPR Fpu(int idx = 0) : Reg(idx, Operand::FPU, 32) { }
};
struct Reg32e : public Reg {
explicit XBYAK_CONSTEXPR Reg32e(int idx, int bit) : Reg(idx, Operand::REG, bit) {}
Reg32e operator|(const ApxFlagNF&) const { Reg32e r(*this); r.setNF(); return r; }
Reg32e operator|(const ApxFlagZU&) const { Reg32e r(*this); r.setZU(); return r; }
};
struct Reg32 : public Reg32e {
explicit XBYAK_CONSTEXPR Reg32(int idx = 0) : Reg32e(idx, 32) {}
};
#ifdef XBYAK64
struct Reg64 : public Reg32e {
explicit XBYAK_CONSTEXPR Reg64(int idx = 0) : Reg32e(idx, 64) {}
};
struct RegRip {
int64_t disp_;
const Label* label_;
bool isAddr_;
explicit XBYAK_CONSTEXPR RegRip(int64_t disp = 0, const Label* label = 0, bool isAddr = false) : disp_(disp), label_(label), isAddr_(isAddr) {}
friend const RegRip operator+(const RegRip& r, int disp) {
return RegRip(r.disp_ + disp, r.label_, r.isAddr_);
}
friend const RegRip operator-(const RegRip& r, int disp) {
return RegRip(r.disp_ - disp, r.label_, r.isAddr_);
}
friend const RegRip operator+(const RegRip& r, int64_t disp) {
return RegRip(r.disp_ + disp, r.label_, r.isAddr_);
}
friend const RegRip operator-(const RegRip& r, int64_t disp) {
return RegRip(r.disp_ - disp, r.label_, r.isAddr_);
}
friend const RegRip operator+(const RegRip& r, const Label& label) {
if (r.label_ || r.isAddr_) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegRip());
return RegRip(r.disp_, &label);
}
friend const RegRip operator+(const RegRip& r, const void *addr) {
if (r.label_ || r.isAddr_) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegRip());
return RegRip(r.disp_ + (int64_t)addr, 0, true);
}
};
#endif
inline Reg8 Reg::cvt8() const
{
Reg r = changeBit(8); return Reg8(r.getIdx(), r.isExt8bit());
}
inline Reg16 Reg::cvt16() const
{
return Reg16(changeBit(16).getIdx());
}
inline Reg32 Reg::cvt32() const
{
return Reg32(changeBit(32).getIdx());
}
#ifdef XBYAK64
inline Reg64 Reg::cvt64() const
{
return Reg64(changeBit(64).getIdx());
}
#endif
#ifndef XBYAK_DISABLE_SEGMENT
// not derived from Reg
class Segment {
int idx_;
public:
enum {
es, cs, ss, ds, fs, gs
};
explicit XBYAK_CONSTEXPR Segment(int idx) : idx_(idx) { assert(0 <= idx_ && idx_ < 6); }
int getIdx() const { return idx_; }
const char *toString() const
{
static const char tbl[][3] = {
"es", "cs", "ss", "ds", "fs", "gs"
};
return tbl[idx_];
}
};
#endif
class RegExp {
public:
#ifdef XBYAK64
enum { i32e = 32 | 64 };
#else
enum { i32e = 32 };
#endif
XBYAK_CONSTEXPR RegExp(size_t disp = 0) : scale_(0), disp_(disp) { }
XBYAK_CONSTEXPR RegExp(const Reg& r, int scale = 1)
: scale_(scale)
, disp_(0)
{
if (!r.isREG(i32e) && !r.is(Reg::XMM|Reg::YMM|Reg::ZMM|Reg::TMM)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
if (scale == 0) return;
if (scale != 1 && scale != 2 && scale != 4 && scale != 8) XBYAK_THROW(ERR_BAD_SCALE)
if (r.getBit() >= 128 || scale != 1) { // xmm/ymm is always index
index_ = r;
} else {
base_ = r;
}
}
bool isVsib(int bit = 128 | 256 | 512) const { return index_.isBit(bit); }
RegExp optimize() const
{
RegExp exp = *this;
// [reg * 2] => [reg + reg]
if (index_.isBit(i32e) && !base_.getBit() && scale_ == 2) {
exp.base_ = index_;
exp.scale_ = 1;
}
return exp;
}
bool operator==(const RegExp& rhs) const
{
return base_ == rhs.base_ && index_ == rhs.index_ && disp_ == rhs.disp_ && scale_ == rhs.scale_;
}
const Reg& getBase() const { return base_; }
const Reg& getIndex() const { return index_; }
int getScale() const { return scale_; }
size_t getDisp() const { return disp_; }
XBYAK_CONSTEXPR void verify() const
{
if (base_.getBit() >= 128) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
if (index_.getBit() && index_.getBit() <= 64) {
if (index_.getIdx() == Operand::ESP) XBYAK_THROW(ERR_ESP_CANT_BE_INDEX)
if (base_.getBit() && base_.getBit() != index_.getBit()) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
}
}
friend RegExp operator+(const RegExp& a, const RegExp& b);
friend RegExp operator-(const RegExp& e, size_t disp);
private:
/*
[base_ + index_ * scale_ + disp_]
base : Reg32e, index : Reg32e(w/o esp), Xmm, Ymm
*/
Reg base_;
Reg index_;
int scale_;
size_t disp_;
};
inline RegExp operator+(const RegExp& a, const RegExp& b)
{
if (a.index_.getBit() && b.index_.getBit()) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegExp())
RegExp ret = a;
if (!ret.index_.getBit()) { ret.index_ = b.index_; ret.scale_ = b.scale_; }
if (b.base_.getBit()) {
if (ret.base_.getBit()) {
if (ret.index_.getBit()) XBYAK_THROW_RET(ERR_BAD_ADDRESSING, RegExp())
// base + base => base + index * 1
ret.index_ = b.base_;
// [reg + esp] => [esp + reg]
if (ret.index_.getIdx() == Operand::ESP) std::swap(ret.base_, ret.index_);
ret.scale_ = 1;
} else {
ret.base_ = b.base_;
}
}
ret.disp_ += b.disp_;
return ret;
}
inline RegExp operator*(const Reg& r, int scale)
{
return RegExp(r, scale);
}
inline RegExp operator*(int scale, const Reg& r)
{
return r * scale;
}
inline RegExp operator-(const RegExp& e, size_t disp)
{
RegExp ret = e;
ret.disp_ -= disp;
return ret;
}
// 2nd parameter for constructor of CodeArray(maxSize, userPtr, alloc)
void *const AutoGrow = (void*)1; //-V566
void *const DontSetProtectRWE = (void*)2; //-V566
class CodeArray {
enum Type {
USER_BUF = 1, // use userPtr(non alignment, non protect)
ALLOC_BUF, // use new(alignment, protect)
AUTO_GROW // automatically move and grow memory if necessary
};
CodeArray(const CodeArray& rhs);
void operator=(const CodeArray&);
bool isAllocType() const { return type_ == ALLOC_BUF || type_ == AUTO_GROW; }
struct AddrInfo {
size_t codeOffset; // position to write
size_t jmpAddr; // value to write
int jmpSize; // size of jmpAddr
inner::LabelMode mode;
AddrInfo(size_t _codeOffset, size_t _jmpAddr, int _jmpSize, inner::LabelMode _mode)
: codeOffset(_codeOffset), jmpAddr(_jmpAddr), jmpSize(_jmpSize), mode(_mode) {}
uint64_t getVal(const uint8_t *top) const
{
uint64_t disp = (mode == inner::LaddTop) ? jmpAddr + size_t(top) : (mode == inner::LasIs) ? jmpAddr : jmpAddr - size_t(top);
if (jmpSize == 4) disp = inner::VerifyInInt32(disp);
return disp;
}
};
typedef std::list<AddrInfo> AddrInfoList;
AddrInfoList addrInfoList_;
const Type type_;
#ifdef XBYAK_USE_MMAP_ALLOCATOR
MmapAllocator defaultAllocator_;
#else
Allocator defaultAllocator_;
#endif
Allocator *alloc_;
protected:
size_t maxSize_;
uint8_t *top_;
size_t size_;
bool isCalledCalcJmpAddress_;
bool useProtect() const { return alloc_->useProtect(); }
/*
allocate new memory and copy old data to the new area
*/
void growMemory()
{
const size_t newSize = (std::max<size_t>)(DEFAULT_MAX_CODE_SIZE, maxSize_ * 2);
uint8_t *newTop = alloc_->alloc(newSize);
if (newTop == 0) XBYAK_THROW(ERR_CANT_ALLOC)
for (size_t i = 0; i < size_; i++) newTop[i] = top_[i];
alloc_->free(top_);
top_ = newTop;
maxSize_ = newSize;
}
/*
calc jmp address for AutoGrow mode
*/
void calcJmpAddress()
{
if (isCalledCalcJmpAddress_) return;
for (AddrInfoList::const_iterator i = addrInfoList_.begin(), ie = addrInfoList_.end(); i != ie; ++i) {
uint64_t disp = i->getVal(top_);
rewrite(i->codeOffset, disp, i->jmpSize);
}
isCalledCalcJmpAddress_ = true;
}
public:
enum ProtectMode {
PROTECT_RW = 0, // read/write
PROTECT_RWE = 1, // read/write/exec
PROTECT_RE = 2 // read/exec
};
explicit CodeArray(size_t maxSize, void *userPtr = 0, Allocator *allocator = 0)
: type_(userPtr == AutoGrow ? AUTO_GROW : (userPtr == 0 || userPtr == DontSetProtectRWE) ? ALLOC_BUF : USER_BUF)
, alloc_(allocator ? allocator : (Allocator*)&defaultAllocator_)
, maxSize_(maxSize)
, top_(type_ == USER_BUF ? reinterpret_cast<uint8_t*>(userPtr) : alloc_->alloc((std::max<size_t>)(maxSize, 1)))
, size_(0)
, isCalledCalcJmpAddress_(false)
{
if (maxSize_ > 0 && top_ == 0) XBYAK_THROW(ERR_CANT_ALLOC)
if ((type_ == ALLOC_BUF && userPtr != DontSetProtectRWE && useProtect()) && !setProtectMode(PROTECT_RWE, false)) {
alloc_->free(top_);
XBYAK_THROW(ERR_CANT_PROTECT)
}
}
virtual ~CodeArray()
{
if (isAllocType()) {
if (useProtect()) setProtectModeRW(false);
alloc_->free(top_);
}
}
bool setProtectMode(ProtectMode mode, bool throwException = true)
{
bool isOK = protect(top_, maxSize_, mode);
if (isOK) return true;
if (throwException) XBYAK_THROW_RET(ERR_CANT_PROTECT, false)
return false;
}
bool setProtectModeRE(bool throwException = true) { return setProtectMode(PROTECT_RE, throwException); }
bool setProtectModeRW(bool throwException = true) { return setProtectMode(PROTECT_RW, throwException); }
void resetSize()
{
size_ = 0;
addrInfoList_.clear();
isCalledCalcJmpAddress_ = false;
}
void db(int code)
{
if (size_ >= maxSize_) {
if (type_ == AUTO_GROW) {
growMemory();
} else {
XBYAK_THROW(ERR_CODE_IS_TOO_BIG)
}
}
top_[size_++] = static_cast<uint8_t>(code);
}
void db(const uint8_t *code, size_t codeSize)
{
for (size_t i = 0; i < codeSize; i++) db(code[i]);
}
void db(uint64_t code, size_t codeSize)
{
if (codeSize > 8) XBYAK_THROW(ERR_BAD_PARAMETER)
for (size_t i = 0; i < codeSize; i++) db(static_cast<uint8_t>(code >> (i * 8)));
}
void dw(uint32_t code) { db(code, 2); }
void dd(uint32_t code) { db(code, 4); }
void dq(uint64_t code) { db(code, 8); }
const uint8_t *getCode() const { return top_; }
template<class F>
const F getCode() const { return reinterpret_cast<F>(top_); }
const uint8_t *getCurr() const { return &top_[size_]; }
template<class F>
const F getCurr() const { return reinterpret_cast<F>(&top_[size_]); }
size_t getSize() const { return size_; }
void setSize(size_t size)
{
if (size > maxSize_) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG)
size_ = size;
}
void dump() const
{
const uint8_t *p = getCode();
size_t bufSize = getSize();
size_t remain = bufSize;
for (int i = 0; i < 4; i++) {
size_t disp = 16;
if (remain < 16) {
disp = remain;
}
for (size_t j = 0; j < 16; j++) {
if (j < disp) {
printf("%02X", p[i * 16 + j]);
}
}
putchar('\n');
remain -= disp;
if (remain == 0) {
break;
}
}
}
/*
@param offset [in] offset from top
@param disp [in] offset from the next of jmp
@param size [in] write size(1, 2, 4, 8)
*/
void rewrite(size_t offset, uint64_t disp, size_t size)
{
assert(offset < maxSize_);
if (size != 1 && size != 2 && size != 4 && size != 8) XBYAK_THROW(ERR_BAD_PARAMETER)
uint8_t *const data = top_ + offset;
for (size_t i = 0; i < size; i++) {
data[i] = static_cast<uint8_t>(disp >> (i * 8));
}
}
void save(size_t offset, size_t val, int size, inner::LabelMode mode)
{
addrInfoList_.push_back(AddrInfo(offset, val, size, mode));
}
bool isAutoGrow() const { return type_ == AUTO_GROW; }
bool isCalledCalcJmpAddress() const { return isCalledCalcJmpAddress_; }
/**
change exec permission of memory
@param addr [in] buffer address
@param size [in] buffer size
@param protectMode [in] mode(RW/RWE/RE)
@return true(success), false(failure)
*/
static inline bool protect(const void *addr, size_t size, int protectMode)
{
#if defined(_WIN32)
const DWORD c_rw = PAGE_READWRITE;
const DWORD c_rwe = PAGE_EXECUTE_READWRITE;
const DWORD c_re = PAGE_EXECUTE_READ;
DWORD mode;
#else
const int c_rw = PROT_READ | PROT_WRITE;
const int c_rwe = PROT_READ | PROT_WRITE | PROT_EXEC;
const int c_re = PROT_READ | PROT_EXEC;
int mode;
#endif
switch (protectMode) {
case PROTECT_RW: mode = c_rw; break;
case PROTECT_RWE: mode = c_rwe; break;
case PROTECT_RE: mode = c_re; break;
default:
return false;
}
#if defined(_WIN32)
DWORD oldProtect;
return VirtualProtect(const_cast<void*>(addr), size, mode, &oldProtect) != 0;
#elif defined(__GNUC__)
size_t pageSize = sysconf(_SC_PAGESIZE);
size_t iaddr = reinterpret_cast<size_t>(addr);
size_t roundAddr = iaddr & ~(pageSize - static_cast<size_t>(1));
return mprotect(reinterpret_cast<void*>(roundAddr), size + (iaddr - roundAddr), mode) == 0;
#else
return true;
#endif
}
/**
get aligned memory pointer
@param addr [in] address
@param alignedSize [in] power of two
@return aligned addr by alingedSize
*/
static inline uint8_t *getAlignedAddress(uint8_t *addr, size_t alignedSize = 16)
{
return reinterpret_cast<uint8_t*>((reinterpret_cast<size_t>(addr) + alignedSize - 1) & ~(alignedSize - static_cast<size_t>(1)));
}
};
class Address : public Operand {
public:
enum Mode {
M_ModRM,
M_64bitDisp,
M_rip,
M_ripAddr
};
XBYAK_CONSTEXPR Address(uint32_t sizeBit, bool broadcast, const RegExp& e)
: Operand(0, MEM, sizeBit), e_(e), label_(0), mode_(M_ModRM), immSize(0), disp8N(0), permitVsib(false), broadcast_(broadcast), optimize_(true)
{
e_.verify();
}
#ifdef XBYAK64
explicit XBYAK_CONSTEXPR Address(size_t disp)
: Operand(0, MEM, 64), e_(disp), label_(0), mode_(M_64bitDisp), immSize(0), disp8N(0), permitVsib(false), broadcast_(false), optimize_(true) { }
XBYAK_CONSTEXPR Address(uint32_t sizeBit, bool broadcast, const RegRip& addr)
: Operand(0, MEM, sizeBit), e_(addr.disp_), label_(addr.label_), mode_(addr.isAddr_ ? M_ripAddr : M_rip), immSize(0), disp8N(0), permitVsib(false), broadcast_(broadcast), optimize_(true) { }
#endif
RegExp getRegExp() const
{
return optimize_ ? e_.optimize() : e_;
}
Address cloneNoOptimize() const { Address addr = *this; addr.optimize_ = false; return addr; }
Mode getMode() const { return mode_; }
bool is32bit() const { return e_.getBase().getBit() == 32 || e_.getIndex().getBit() == 32; }
bool isOnlyDisp() const { return !e_.getBase().getBit() && !e_.getIndex().getBit(); } // for mov eax
size_t getDisp() const { return e_.getDisp(); }
bool is64bitDisp() const { return mode_ == M_64bitDisp; } // for moffset
bool isBroadcast() const { return broadcast_; }
bool hasRex2() const { return e_.getBase().hasRex2() || e_.getIndex().hasRex2(); }
const Label* getLabel() const { return label_; }
bool operator==(const Address& rhs) const
{
return getBit() == rhs.getBit() && e_ == rhs.e_ && label_ == rhs.label_ && mode_ == rhs.mode_ && immSize == rhs.immSize && disp8N == rhs.disp8N && permitVsib == rhs.permitVsib && broadcast_ == rhs.broadcast_ && optimize_ == rhs.optimize_;
}
bool operator!=(const Address& rhs) const { return !operator==(rhs); }
bool isVsib() const { return e_.isVsib(); }
private:
RegExp e_;
const Label* label_;
Mode mode_;
public:
int immSize; // the size of immediate value of nmemonics (0, 1, 2, 4)
int disp8N; // 0(normal), 1(force disp32), disp8N = {2, 4, 8}
bool permitVsib;
private:
bool broadcast_;
bool optimize_;
};
inline const Address& Operand::getAddress() const
{
assert(isMEM());
return static_cast<const Address&>(*this);
}
inline Address Operand::getAddress(int immSize) const
{
Address addr = getAddress();
addr.immSize = immSize;
return addr;
}
inline bool Operand::operator==(const Operand& rhs) const
{
if (isMEM() && rhs.isMEM()) return this->getAddress() == rhs.getAddress();
return isEqualIfNotInherited(rhs);
}
inline XBYAK_CONSTEXPR bool Operand::hasRex2() const
{
return (isREG() && isExtIdx2()) || (isMEM() && static_cast<const Address&>(*this).hasRex2());
}
class AddressFrame {
void operator=(const AddressFrame&);
AddressFrame(const AddressFrame&);
public:
const uint32_t bit_;
const bool broadcast_;
explicit XBYAK_CONSTEXPR AddressFrame(uint32_t bit, bool broadcast = false) : bit_(bit), broadcast_(broadcast) { }
Address operator[](const RegExp& e) const
{
return Address(bit_, broadcast_, e);
}
Address operator[](const void *disp) const
{
return Address(bit_, broadcast_, RegExp(reinterpret_cast<size_t>(disp)));
}
#ifdef XBYAK64
Address operator[](uint64_t disp) const { return Address(disp); }
Address operator[](const RegRip& addr) const { return Address(bit_, broadcast_, addr); }
#endif
};
struct JmpLabel {
size_t endOfJmp; /* offset from top to the end address of jmp */
int jmpSize;
inner::LabelMode mode;
size_t disp; // disp for [rip + disp]
explicit JmpLabel(size_t endOfJmp = 0, int jmpSize = 0, inner::LabelMode mode = inner::LasIs, size_t disp = 0)
: endOfJmp(endOfJmp), jmpSize(jmpSize), mode(mode), disp(disp)
{
}
};
class LabelManager;
class Label {
mutable LabelManager *mgr;
mutable int id;
friend class LabelManager;
public:
Label() : mgr(0), id(0) {}
Label(const Label& rhs);
Label& operator=(const Label& rhs);
~Label();
void clear() { mgr = 0; id = 0; }
int getId() const { return id; }
const uint8_t *getAddress() const;
// backward compatibility
static inline std::string toStr(int num)
{
char buf[16];
#if defined(_MSC_VER) && (_MSC_VER < 1900)
_snprintf_s
#else
snprintf
#endif
(buf, sizeof(buf), ".%08x", num);
return buf;
}
};
class LabelManager {
// for string label
struct SlabelVal {
size_t offset;
SlabelVal(size_t offset) : offset(offset) {}
};
typedef XBYAK_STD_UNORDERED_MAP<std::string, SlabelVal> SlabelDefList;
typedef XBYAK_STD_UNORDERED_MULTIMAP<std::string, const JmpLabel> SlabelUndefList;
struct SlabelState {
SlabelDefList defList;
SlabelUndefList undefList;
};
typedef std::list<SlabelState> StateList;
// for Label class
struct ClabelVal {
ClabelVal(size_t offset = 0) : offset(offset), refCount(1) {}
size_t offset;
int refCount;
};
typedef XBYAK_STD_UNORDERED_MAP<int, ClabelVal> ClabelDefList;
typedef XBYAK_STD_UNORDERED_MULTIMAP<int, const JmpLabel> ClabelUndefList;
typedef XBYAK_STD_UNORDERED_SET<Label*> LabelPtrList;
CodeArray *base_;
// global : stateList_.front(), local : stateList_.back()
StateList stateList_;
mutable int labelId_;
ClabelDefList clabelDefList_;
ClabelUndefList clabelUndefList_;
LabelPtrList labelPtrList_;
int getId(const Label& label) const
{
if (label.id == 0) label.id = labelId_++;
return label.id;
}
template<class DefList, class UndefList, class T>
void define_inner(DefList& defList, UndefList& undefList, const T& labelId, size_t addrOffset)
{
// add label
typename DefList::value_type item(labelId, addrOffset);
std::pair<typename DefList::iterator, bool> ret = defList.insert(item);
if (!ret.second) XBYAK_THROW(ERR_LABEL_IS_REDEFINED)
// search undefined label
for (;;) {
typename UndefList::iterator itr = undefList.find(labelId);
if (itr == undefList.end()) break;
const JmpLabel *jmp = &itr->second;
const size_t offset = jmp->endOfJmp - jmp->jmpSize;
size_t disp;
if (jmp->mode == inner::LaddTop) {
disp = addrOffset;
} else if (jmp->mode == inner::Labs) {
disp = size_t(base_->getCurr());
} else {
disp = addrOffset - jmp->endOfJmp + jmp->disp;
#ifdef XBYAK64
if (jmp->jmpSize <= 4 && !inner::IsInInt32(disp)) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG)
#endif
if (jmp->jmpSize == 1 && !inner::IsInDisp8((uint32_t)disp)) XBYAK_THROW(ERR_LABEL_IS_TOO_FAR)
}
if (base_->isAutoGrow()) {
base_->save(offset, disp, jmp->jmpSize, jmp->mode);
} else {
base_->rewrite(offset, disp, jmp->jmpSize);
}
undefList.erase(itr);
}
}
template<class DefList, class T>
bool getOffset_inner(const DefList& defList, size_t *offset, const T& label) const
{
typename DefList::const_iterator i = defList.find(label);
if (i == defList.end()) return false;
*offset = i->second.offset;
return true;
}
friend class Label;
void incRefCount(int id, Label *label)
{
clabelDefList_[id].refCount++;
labelPtrList_.insert(label);
}
void decRefCount(int id, Label *label)
{
labelPtrList_.erase(label);
ClabelDefList::iterator i = clabelDefList_.find(id);
if (i == clabelDefList_.end()) return;
if (i->second.refCount == 1) {
clabelDefList_.erase(id);
} else {
--i->second.refCount;
}
}
template<class T>
bool hasUndefinedLabel_inner(const T& list) const
{
#ifndef NDEBUG
for (typename T::const_iterator i = list.begin(); i != list.end(); ++i) {
std::cerr << "undefined label:" << i->first << std::endl;
}
#endif
return !list.empty();
}
// detach all labels linked to LabelManager
void resetLabelPtrList()
{
for (LabelPtrList::iterator i = labelPtrList_.begin(), ie = labelPtrList_.end(); i != ie; ++i) {
(*i)->clear();
}
labelPtrList_.clear();
}
public:
LabelManager()
{
reset();
}
~LabelManager()
{
resetLabelPtrList();
}
void reset()
{
base_ = 0;
labelId_ = 1;
stateList_.clear();
stateList_.push_back(SlabelState());
stateList_.push_back(SlabelState());
clabelDefList_.clear();
clabelUndefList_.clear();
resetLabelPtrList();
}
void enterLocal()
{
stateList_.push_back(SlabelState());
}
void leaveLocal()
{
if (stateList_.size() <= 2) XBYAK_THROW(ERR_UNDER_LOCAL_LABEL)
if (hasUndefinedLabel_inner(stateList_.back().undefList)) XBYAK_THROW(ERR_LABEL_IS_NOT_FOUND)
stateList_.pop_back();
}
void set(CodeArray *base) { base_ = base; }
void defineSlabel(std::string label)
{
if (label == "@b" || label == "@f") XBYAK_THROW(ERR_BAD_LABEL_STR)
if (label == "@@") {
SlabelDefList& defList = stateList_.front().defList;
SlabelDefList::iterator i = defList.find("@f");
if (i != defList.end()) {
defList.erase(i);
label = "@b";
} else {
i = defList.find("@b");
if (i != defList.end()) {
defList.erase(i);
}
label = "@f";
}
}
SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
define_inner(st.defList, st.undefList, label, base_->getSize());
}
void defineClabel(Label& label)
{
define_inner(clabelDefList_, clabelUndefList_, getId(label), base_->getSize());
label.mgr = this;
labelPtrList_.insert(&label);
}
void assign(Label& dst, const Label& src)
{
ClabelDefList::const_iterator i = clabelDefList_.find(src.id);
if (i == clabelDefList_.end()) XBYAK_THROW(ERR_LABEL_ISNOT_SET_BY_L)
define_inner(clabelDefList_, clabelUndefList_, dst.id, i->second.offset);
dst.mgr = this;
labelPtrList_.insert(&dst);
}
bool getOffset(size_t *offset, std::string& label) const
{
const SlabelDefList& defList = stateList_.front().defList;
if (label == "@b") {
if (defList.find("@f") != defList.end()) {
label = "@f";
} else if (defList.find("@b") == defList.end()) {
XBYAK_THROW_RET(ERR_LABEL_IS_NOT_FOUND, false)
}
} else if (label == "@f") {
if (defList.find("@f") != defList.end()) {
label = "@b";
}
}
const SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
return getOffset_inner(st.defList, offset, label);
}
bool getOffset(size_t *offset, const Label& label) const
{
return getOffset_inner(clabelDefList_, offset, getId(label));
}
void addUndefinedLabel(const std::string& label, const JmpLabel& jmp)
{
SlabelState& st = *label.c_str() == '.' ? stateList_.back() : stateList_.front();
st.undefList.insert(SlabelUndefList::value_type(label, jmp));
}
void addUndefinedLabel(const Label& label, const JmpLabel& jmp)
{
clabelUndefList_.insert(ClabelUndefList::value_type(label.id, jmp));
}
bool hasUndefSlabel() const
{
for (StateList::const_iterator i = stateList_.begin(), ie = stateList_.end(); i != ie; ++i) {
if (hasUndefinedLabel_inner(i->undefList)) return true;
}
return false;
}
bool hasUndefClabel() const { return hasUndefinedLabel_inner(clabelUndefList_); }
const uint8_t *getCode() const { return base_->getCode(); }
bool isReady() const { return !base_->isAutoGrow() || base_->isCalledCalcJmpAddress(); }
};
inline Label::Label(const Label& rhs)
{
id = rhs.id;
mgr = rhs.mgr;
if (mgr) mgr->incRefCount(id, this);
}
inline Label& Label::operator=(const Label& rhs)
{
if (id) XBYAK_THROW_RET(ERR_LABEL_IS_ALREADY_SET_BY_L, *this)
id = rhs.id;
mgr = rhs.mgr;
if (mgr) mgr->incRefCount(id, this);
return *this;
}
inline Label::~Label()
{
if (id && mgr) mgr->decRefCount(id, this);
}
inline const uint8_t* Label::getAddress() const
{
if (mgr == 0 || !mgr->isReady()) return 0;
size_t offset;
if (!mgr->getOffset(&offset, *this)) return 0;
return mgr->getCode() + offset;
}
typedef enum {
DefaultEncoding,
VexEncoding,
EvexEncoding
} PreferredEncoding;
class CodeGenerator : public CodeArray {
public:
enum LabelType {
T_SHORT,
T_NEAR,
T_FAR, // far jump
T_AUTO // T_SHORT if possible
};
private:
CodeGenerator operator=(const CodeGenerator&); // don't call
#ifdef XBYAK64
enum { i32e = 32 | 64, BIT = 64 };
static const uint64_t dummyAddr = uint64_t(0x1122334455667788ull);
typedef Reg64 NativeReg;
#else
enum { i32e = 32, BIT = 32 };
static const size_t dummyAddr = 0x12345678;
typedef Reg32 NativeReg;
#endif
// (XMM, XMM|MEM)
static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2)
{
return op1.isXMM() && (op2.isXMM() || op2.isMEM());
}
// (MMX, MMX|MEM) or (XMM, XMM|MEM)
static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2)
{
return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2);
}
// (XMM, MMX|MEM)
static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2)
{
return op1.isXMM() && (op2.isMMX() || op2.isMEM());
}
// (MMX, XMM|MEM)
static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2)
{
return op1.isMMX() && (op2.isXMM() || op2.isMEM());
}
// (XMM, REG32|MEM)
static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2)
{
return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM());
}
// (REG32, XMM|MEM)
static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2)
{
return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM());
}
// (REG32, REG32|MEM)
static inline bool isREG32_REG32orMEM(const Operand& op1, const Operand& op2)
{
return op1.isREG(i32e) && ((op2.isREG(i32e) && op1.getBit() == op2.getBit()) || op2.isMEM());
}
static inline bool isValidSSE(const Operand& op1)
{
// SSE instructions do not support XMM16 - XMM31
return !(op1.isXMM() && op1.getIdx() >= 16);
}
static inline uint8_t rexRXB(int bit, int bit3, const Reg& r, const Reg& b, const Reg& x = Reg())
{
int v = bit3 ? 8 : 0;
if (r.hasIdxBit(bit)) v |= 4;
if (x.hasIdxBit(bit)) v |= 2;
if (b.hasIdxBit(bit)) v |= 1;
return uint8_t(v);
}
void rex2(int bit3, int rex4bit, const Reg& r, const Reg& b, const Reg& x = Reg())
{
db(0xD5);
db((rexRXB(4, bit3, r, b, x) << 4) | rex4bit);
}
// return true if rex2 is selected
bool rex(const Operand& op1, const Operand& op2 = Operand(), uint64_t type = 0)
{
if (op1.getNF() | op2.getNF()) XBYAK_THROW_RET(ERR_INVALID_NF, false)
if (op1.getZU() | op2.getZU()) XBYAK_THROW_RET(ERR_INVALID_ZU, false)
uint8_t rex = 0;
const Operand *p1 = &op1, *p2 = &op2;
if (p1->isMEM()) std::swap(p1, p2);
if (p1->isMEM()) XBYAK_THROW_RET(ERR_BAD_COMBINATION, false)
// except movsx(16bit, 32/64bit)
bool p66 = (op1.isBit(16) && !op2.isBit(i32e)) || (op2.isBit(16) && !op1.isBit(i32e));
if ((type & T_66) || p66) db(0x66);
if (type & T_F2) {
db(0xF2);
}
if (type & T_F3) {
db(0xF3);
}
bool is0F = type & T_0F;
if (p2->isMEM()) {
const Reg& r = *static_cast<const Reg*>(p1);
const Address& addr = p2->getAddress();
const RegExp e = addr.getRegExp();
const Reg& base = e.getBase();
const Reg& idx = e.getIndex();
if (BIT == 64 && addr.is32bit()) db(0x67);
rex = rexRXB(3, r.isREG(64), r, base, idx);
if (r.hasRex2() || addr.hasRex2()) {
if (type & (T_0F38|T_0F3A)) XBYAK_THROW_RET(ERR_CANT_USE_REX2, false)
rex2(is0F, rex, r, base, idx);
return true;
}
if (rex || r.isExt8bit()) rex |= 0x40;
} else {
const Reg& r1 = static_cast<const Reg&>(op1);
const Reg& r2 = static_cast<const Reg&>(op2);
// ModRM(reg, base);
rex = rexRXB(3, r1.isREG(64) || r2.isREG(64), r2, r1);
if (r1.hasRex2() || r2.hasRex2()) {
if (type & (T_0F38|T_0F3A)) XBYAK_THROW_RET(ERR_CANT_USE_REX2, 0)
rex2(is0F, rex, r2, r1);
return true;
}
if (rex || r1.isExt8bit() || r2.isExt8bit()) rex |= 0x40;
}
if (rex) db(rex);
return false;
}
// @@@begin of avx_type_def.h
static const uint64_t T_NONE = 0ull;
// low 3 bit
static const uint64_t T_N1 = 1ull;
static const uint64_t T_N2 = 2ull;
static const uint64_t T_N4 = 3ull;
static const uint64_t T_N8 = 4ull;
static const uint64_t T_N16 = 5ull;
static const uint64_t T_N32 = 6ull;
static const uint64_t T_NX_MASK = 7ull;
static const uint64_t T_DUP = T_NX_MASK;//1 << 4, // N = (8, 32, 64)
static const uint64_t T_N_VL = 1ull << 3; // N * (1, 2, 4) for VL
static const uint64_t T_APX = 1ull << 4;
static const uint64_t T_66 = 1ull << 5; // pp = 1
static const uint64_t T_F3 = 1ull << 6; // pp = 2
static const uint64_t T_ER_R = 1ull << 7; // reg{er}
static const uint64_t T_0F = 1ull << 8;
static const uint64_t T_0F38 = 1ull << 9;
static const uint64_t T_0F3A = 1ull << 10;
static const uint64_t T_L0 = 1ull << 11;
static const uint64_t T_L1 = 1ull << 12;
static const uint64_t T_W0 = 1ull << 13;
static const uint64_t T_W1 = 1ull << 14;
static const uint64_t T_EW0 = 1ull << 15;
static const uint64_t T_EW1 = 1ull << 16;
static const uint64_t T_YMM = 1ull << 17; // support YMM, ZMM
static const uint64_t T_EVEX = 1ull << 18;
static const uint64_t T_ER_X = 1ull << 19; // xmm{er}
static const uint64_t T_ER_Y = 1ull << 20; // ymm{er}
static const uint64_t T_ER_Z = 1ull << 21; // zmm{er}
static const uint64_t T_SAE_X = 1ull << 22; // xmm{sae}
static const uint64_t T_SAE_Y = 1ull << 23; // ymm{sae}
static const uint64_t T_SAE_Z = 1ull << 24; // zmm{sae}
static const uint64_t T_MUST_EVEX = 1ull << 25; // contains T_EVEX
static const uint64_t T_B32 = 1ull << 26; // m32bcst
static const uint64_t T_B64 = 1ull << 27; // m64bcst
static const uint64_t T_B16 = T_B32 | T_B64; // m16bcst (Be careful)
static const uint64_t T_M_K = 1ull << 28; // mem{k}
static const uint64_t T_VSIB = 1ull << 29;
static const uint64_t T_MEM_EVEX = 1ull << 30; // use evex if mem
static const uint64_t T_FP16 = 1ull << 31; // avx512-fp16
static const uint64_t T_MAP5 = T_FP16 | T_0F;
static const uint64_t T_MAP6 = T_FP16 | T_0F38;
static const uint64_t T_NF = 1ull << 32; // T_nf
static const uint64_t T_CODE1_IF1 = 1ull << 33; // code|=1 if !r.isBit(8)
static const uint64_t T_ND1 = 1ull << 35; // ND=1
static const uint64_t T_ZU = 1ull << 36; // ND=ZU
static const uint64_t T_F2 = 1ull << 37; // pp = 3
// T_66 = 1, T_F3 = 2, T_F2 = 3
static inline uint32_t getPP(uint64_t type) { return (type & T_66) ? 1 : (type & T_F3) ? 2 : (type & T_F2) ? 3 : 0; }
// @@@end of avx_type_def.h
static inline uint32_t getMap(uint64_t type) { return (type & T_0F) ? 1 : (type & T_0F38) ? 2 : (type & T_0F3A) ? 3 : 0; }
void vex(const Reg& reg, const Reg& base, const Operand *v, uint64_t type, int code, bool x = false)
{
int w = (type & T_W1) ? 1 : 0;
bool is256 = (type & T_L1) ? true : (type & T_L0) ? false : reg.isYMM();
bool r = reg.isExtIdx();
bool b = base.isExtIdx();
int idx = v ? v->getIdx() : 0;
if ((idx | reg.getIdx() | base.getIdx()) >= 16) XBYAK_THROW(ERR_BAD_COMBINATION)
uint32_t pp = getPP(type);
uint32_t vvvv = (((~idx) & 15) << 3) | (is256 ? 4 : 0) | pp;
if (!b && !x && !w && (type & T_0F)) {
db(0xC5); db((r ? 0 : 0x80) | vvvv);
} else {
uint32_t mmmm = getMap(type);
db(0xC4); db((r ? 0 : 0x80) | (x ? 0 : 0x40) | (b ? 0 : 0x20) | mmmm); db((w << 7) | vvvv);
}
db(code);
}
void verifySAE(const Reg& r, uint64_t type) const
{
if (((type & T_SAE_X) && r.isXMM()) || ((type & T_SAE_Y) && r.isYMM()) || ((type & T_SAE_Z) && r.isZMM())) return;
XBYAK_THROW(ERR_SAE_IS_INVALID)
}
void verifyER(const Reg& r, uint64_t type) const
{
if ((type & T_ER_R) && r.isREG(32|64)) return;
if (((type & T_ER_X) && r.isXMM()) || ((type & T_ER_Y) && r.isYMM()) || ((type & T_ER_Z) && r.isZMM())) return;
XBYAK_THROW(ERR_ER_IS_INVALID)
}
// (a, b, c) contains non zero two or three values then err
int verifyDuplicate(int a, int b, int c, int err)
{
int v = a | b | c;
if ((a > 0 && a != v) + (b > 0 && b != v) + (c > 0 && c != v) > 0) XBYAK_THROW_RET(err, 0)
return v;
}
int evex(const Reg& reg, const Reg& base, const Operand *v, uint64_t type, int code, const Reg *x = 0, bool b = false, int aaa = 0, uint32_t VL = 0, bool Hi16Vidx = false)
{
if (!(type & (T_EVEX | T_MUST_EVEX))) XBYAK_THROW_RET(ERR_EVEX_IS_INVALID, 0)
int w = (type & T_EW1) ? 1 : 0;
uint32_t mmm = getMap(type);
if (type & T_FP16) mmm |= 4;
uint32_t pp = getPP(type);
int idx = v ? v->getIdx() : 0;
uint32_t vvvv = ~idx;
bool R = reg.isExtIdx();
bool X3 = (x && x->isExtIdx()) || (base.isSIMD() && base.isExtIdx2());
bool B4 = base.isREG() && base.isExtIdx2();
bool X4 = x && (x->isREG() && x->isExtIdx2());
bool B = base.isExtIdx();
bool Rp = reg.isExtIdx2();
int LL;
int rounding = verifyDuplicate(reg.getRounding(), base.getRounding(), v ? v->getRounding() : 0, ERR_ROUNDING_IS_ALREADY_SET);
int disp8N = 1;
if (rounding) {
if (rounding == EvexModifierRounding::T_SAE) {
verifySAE(base, type); LL = 0;
} else {
verifyER(base, type); LL = rounding - 1;
}
b = true;
} else {
if (v) VL = (std::max)(VL, v->getBit());
VL = (std::max)((std::max)(reg.getBit(), base.getBit()), VL);
LL = (VL == 512) ? 2 : (VL == 256) ? 1 : 0;
if (b) {
disp8N = ((type & T_B16) == T_B16) ? 2 : (type & T_B32) ? 4 : 8;
} else if ((type & T_NX_MASK) == T_DUP) {
disp8N = VL == 128 ? 8 : VL == 256 ? 32 : 64;
} else {
if ((type & (T_NX_MASK | T_N_VL)) == 0) {
type |= T_N16 | T_N_VL; // default
}
int low = type & T_NX_MASK;
if (low > 0) {
disp8N = 1 << (low - 1);
if (type & T_N_VL) disp8N *= (VL == 512 ? 4 : VL == 256 ? 2 : 1);
}
}
}
bool V4 = ((v ? v->isExtIdx2() : 0) || Hi16Vidx);
bool z = reg.hasZero() || base.hasZero() || (v ? v->hasZero() : false);
if (aaa == 0) aaa = verifyDuplicate(base.getOpmaskIdx(), reg.getOpmaskIdx(), (v ? v->getOpmaskIdx() : 0), ERR_OPMASK_IS_ALREADY_SET);
if (aaa == 0) z = 0; // clear T_z if mask is not set
db(0x62);
db((R ? 0 : 0x80) | (X3 ? 0 : 0x40) | (B ? 0 : 0x20) | (Rp ? 0 : 0x10) | (B4 ? 8 : 0) | mmm);
db((w == 1 ? 0x80 : 0) | ((vvvv & 15) << 3) | (X4 ? 0 : 4) | (pp & 3));
db((z ? 0x80 : 0) | ((LL & 3) << 5) | (b ? 0x10 : 0) | (V4 ? 0 : 8) | (aaa & 7));
db(code);
return disp8N;
}
// evex of Legacy
void evexLeg(const Reg& r, const Reg& b, const Reg& x, const Reg& v, uint64_t type, int sc = NONE)
{
int M = getMap(type); if (M == 0) M = 4; // legacy
int R3 = !r.isExtIdx();
int X3 = !x.isExtIdx();
int B3 = b.isExtIdx() ? 0 : 0x20;
int R4 = r.isExtIdx2() ? 0 : 0x10;
int B4 = b.isExtIdx2() ? 0x08 : 0;
int w = (type & T_W0) ? 0 : (r.isBit(64) || v.isBit(64) || (type & T_W1));
int V = (~v.getIdx() & 15) << 3;
int X4 = x.isExtIdx2() ? 0 : 0x04;
int pp = (type & (T_F2|T_F3|T_66)) ? getPP(type) : (r.isBit(16) || v.isBit(16));
int V4 = !v.isExtIdx2();
int ND = (type & T_ZU) ? (r.getZU() || b.getZU()) : (type & T_ND1) ? 1 : (type & T_APX) ? 0 : v.isREG();
int NF = r.getNF() | b.getNF() | x.getNF() | v.getNF();
int L = 0;
if ((type & T_NF) == 0 && NF) XBYAK_THROW(ERR_INVALID_NF)
if ((type & T_ZU) == 0 && r.getZU()) XBYAK_THROW(ERR_INVALID_ZU)
db(0x62);
db((R3<<7) | (X3<<6) | B3 | R4 | B4 | M);
db((w<<7) | V | X4 | pp);
if (sc != NONE) {
db((L<<5) | (ND<<4) | sc);
} else {
db((L<<5) | (ND<<4) | (V4<<3) | (NF<<2));
}
}
void setModRM(int mod, int r1, int r2)
{
db(static_cast<uint8_t>((mod << 6) | ((r1 & 7) << 3) | (r2 & 7)));
}
void setSIB(const RegExp& e, int reg, int disp8N = 0)
{
uint64_t disp64 = e.getDisp();
#if defined(XBYAK64) && !defined(__ILP32__)
#ifdef XBYAK_OLD_DISP_CHECK
// treat 0xffffffff as 0xffffffffffffffff
uint64_t high = disp64 >> 32;
if (high != 0 && high != 0xFFFFFFFF) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG)
#else
// displacement should be a signed 32-bit value, so also check sign bit
uint64_t high = disp64 >> 31;
if (high != 0 && high != 0x1FFFFFFFF) XBYAK_THROW(ERR_OFFSET_IS_TOO_BIG)
#endif
#endif
uint32_t disp = static_cast<uint32_t>(disp64);
const Reg& base = e.getBase();
const Reg& index = e.getIndex();
const int baseIdx = base.getIdx();
const int baseBit = base.getBit();
const int indexBit = index.getBit();
enum {
mod00 = 0, mod01 = 1, mod10 = 2
};
int mod = mod10; // disp32
if (!baseBit || ((baseIdx & 7) != Operand::EBP && disp == 0)) {
mod = mod00;
} else {
if (disp8N == 0) {
if (inner::IsInDisp8(disp)) {
mod = mod01;
}
} else {
// disp must be casted to signed
uint32_t t = static_cast<uint32_t>(static_cast<int>(disp) / disp8N);
if ((disp % disp8N) == 0 && inner::IsInDisp8(t)) {
disp = t;
mod = mod01;
}
}
}
const int newBaseIdx = baseBit ? (baseIdx & 7) : Operand::EBP;
/* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */
bool hasSIB = indexBit || (baseIdx & 7) == Operand::ESP;
#ifdef XBYAK64
if (!baseBit && !indexBit) hasSIB = true;
#endif
if (hasSIB) {
setModRM(mod, reg, Operand::ESP);
/* SIB = [2:3:3] = [SS:index:base(=rm)] */
const int idx = indexBit ? (index.getIdx() & 7) : Operand::ESP;
const int scale = e.getScale();
const int SS = (scale == 8) ? 3 : (scale == 4) ? 2 : (scale == 2) ? 1 : 0;
setModRM(SS, idx, newBaseIdx);
} else {
setModRM(mod, reg, newBaseIdx);
}
if (mod == mod01) {
db(disp);
} else if (mod == mod10 || (mod == mod00 && !baseBit)) {
dd(disp);
}
}
LabelManager labelMgr_;
bool isInDisp16(uint32_t x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; }
void writeCode(uint64_t type, const Reg& r, int code, bool rex2 = false)
{
if (!(type&T_APX || rex2)) {
if (type & T_0F) {
db(0x0F);
} else if (type & T_0F38) {
db(0x0F); db(0x38);
} else if (type & T_0F3A) {
db(0x0F); db(0x3A);
}
}
db(code | ((type == 0 || (type & T_CODE1_IF1)) && !r.isBit(8)));
}
void opRR(const Reg& reg1, const Reg& reg2, uint64_t type, int code)
{
bool rex2 = rex(reg2, reg1, type);
writeCode(type, reg1, code, rex2);
setModRM(3, reg1.getIdx(), reg2.getIdx());
}
void opMR(const Address& addr, const Reg& r, uint64_t type, int code, uint64_t type2 = 0, int code2 = NONE)
{
if (code2 == NONE) code2 = code;
if (type2 && opROO(Reg(), addr, r, type2, code2)) return;
if (addr.is64bitDisp()) XBYAK_THROW(ERR_CANT_USE_64BIT_DISP)
bool rex2 = rex(addr, r, type);
writeCode(type, r, code, rex2);
opAddr(addr, r.getIdx());
}
void opLoadSeg(const Address& addr, const Reg& reg, uint64_t type, int code)
{
if (reg.isBit(8)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
if (addr.is64bitDisp()) XBYAK_THROW(ERR_CANT_USE_64BIT_DISP)
// can't use opMR
rex(addr, reg, type);
if (type & T_0F) db(0x0F);
db(code);
opAddr(addr, reg.getIdx());
}
// for only MPX(bnd*)
void opMIB(const Address& addr, const Reg& reg, uint64_t type, int code)
{
if (addr.getMode() != Address::M_ModRM) XBYAK_THROW(ERR_INVALID_MIB_ADDRESS)
opMR(addr.cloneNoOptimize(), reg, type, code);
}
void makeJmp(uint32_t disp, LabelType type, uint8_t shortCode, uint8_t longCode, uint8_t longPref)
{
const int shortJmpSize = 2;
const int longHeaderSize = longPref ? 2 : 1;
const int longJmpSize = longHeaderSize + 4;
if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) {
db(shortCode); db(disp - shortJmpSize);
} else {
if (type == T_SHORT) XBYAK_THROW(ERR_LABEL_IS_TOO_FAR)
if (longPref) db(longPref);
db(longCode); dd(disp - longJmpSize);
}
}
bool isNEAR(LabelType type) const { return type == T_NEAR || (type == T_AUTO && isDefaultJmpNEAR_); }
template<class T>
void opJmp(T& label, LabelType type, uint8_t shortCode, uint8_t longCode, uint8_t longPref)
{
if (type == T_FAR) XBYAK_THROW(ERR_NOT_SUPPORTED)
if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory(); /* avoid splitting code of jmp */
size_t offset = 0;
if (labelMgr_.getOffset(&offset, label)) { /* label exists */
makeJmp(inner::VerifyInInt32(offset - size_), type, shortCode, longCode, longPref);
} else {
int jmpSize = 0;
if (isNEAR(type)) {
jmpSize = 4;
if (longPref) db(longPref);
db(longCode); dd(0);
} else {
jmpSize = 1;
db(shortCode); db(0);
}
JmpLabel jmp(size_, jmpSize, inner::LasIs);
labelMgr_.addUndefinedLabel(label, jmp);
}
}
void opJmpAbs(const void *addr, LabelType type, uint8_t shortCode, uint8_t longCode, uint8_t longPref = 0)
{
if (type == T_FAR) XBYAK_THROW(ERR_NOT_SUPPORTED)
if (isAutoGrow()) {
if (!isNEAR(type)) XBYAK_THROW(ERR_ONLY_T_NEAR_IS_SUPPORTED_IN_AUTO_GROW)
if (size_ + 16 >= maxSize_) growMemory();
if (longPref) db(longPref);
db(longCode);
dd(0);
save(size_ - 4, size_t(addr) - size_, 4, inner::Labs);
} else {
makeJmp(inner::VerifyInInt32(reinterpret_cast<const uint8_t*>(addr) - getCurr()), type, shortCode, longCode, longPref);
}
}
void opJmpOp(const Operand& op, LabelType type, int ext)
{
const int bit = 16|i32e;
if (type == T_FAR) {
if (!op.isMEM(bit)) XBYAK_THROW(ERR_NOT_SUPPORTED)
opRext(op, bit, ext + 1, 0, 0xFF, false);
} else {
opRext(op, bit, ext, 0, 0xFF, true);
}
}
// reg is reg field of ModRM
// immSize is the size for immediate value
void opAddr(const Address &addr, int reg)
{
if (!addr.permitVsib && addr.isVsib()) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING)
if (addr.getMode() == Address::M_ModRM) {
setSIB(addr.getRegExp(), reg, addr.disp8N);
} else if (addr.getMode() == Address::M_rip || addr.getMode() == Address::M_ripAddr) {
setModRM(0, reg, 5);
if (addr.getLabel()) { // [rip + Label]
putL_inner(*addr.getLabel(), true, addr.getDisp() - addr.immSize);
} else {
size_t disp = addr.getDisp();
if (addr.getMode() == Address::M_ripAddr) {
if (isAutoGrow()) XBYAK_THROW(ERR_INVALID_RIP_IN_AUTO_GROW)
disp -= (size_t)getCurr() + 4 + addr.immSize;
}
dd(inner::VerifyInInt32(disp));
}
}
}
void opSSE(const Reg& r, const Operand& op, uint64_t type, int code, bool isValid(const Operand&, const Operand&), int imm8 = NONE)
{
if (isValid && !isValid(r, op)) XBYAK_THROW(ERR_BAD_COMBINATION)
if (!isValidSSE(r) || !isValidSSE(op)) XBYAK_THROW(ERR_NOT_SUPPORTED)
opRO(r, op, type, code, true, (imm8 != NONE) ? 1 : 0);
if (imm8 != NONE) db(imm8);
}
void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext)
{
if (!isValidSSE(mmx)) XBYAK_THROW(ERR_NOT_SUPPORTED)
uint64_t type = T_0F;
if (mmx.isXMM()) type |= T_66;
opRR(Reg32(ext), mmx, type, code);
db(imm8);
}
void opMMX(const Mmx& mmx, const Operand& op, int code, uint64_t type = T_0F, uint64_t pref = T_66, int imm8 = NONE)
{
if (mmx.isXMM()) type |= pref;
opSSE(mmx, op, type, code, isXMMorMMX_MEM, imm8);
}
void opMovXMM(const Operand& op1, const Operand& op2, uint64_t type, int code)
{
if (!isValidSSE(op1) || !isValidSSE(op2)) XBYAK_THROW(ERR_NOT_SUPPORTED)
if (op1.isXMM() && op2.isMEM()) {
opMR(op2.getAddress(), op1.getReg(), type, code);
} else if (op1.isMEM() && op2.isXMM()) {
opMR(op1.getAddress(), op2.getReg(), type, code | 1);
} else {
XBYAK_THROW(ERR_BAD_COMBINATION)
}
}
// pextr{w,b,d}, extractps
void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false)
{
if (!isValidSSE(op) || !isValidSSE(mmx)) XBYAK_THROW(ERR_NOT_SUPPORTED)
if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */
if (mmx.isXMM()) db(0x66);
opRR(op.getReg(), mmx, T_0F, 0xC5); db(imm);
} else {
opSSE(mmx, op, T_66 | T_0F3A, code, isXMM_REG32orMEM, imm);
}
}
// (r, r, m) or (r, m, r)
bool opROO(const Reg& d, const Operand& op1, const Operand& op2, uint64_t type, int code, int immSize = 0, int sc = NONE)
{
if (!(type & T_MUST_EVEX) && !d.isREG() && !(d.hasRex2NFZU() || op1.hasRex2NFZU() || op2.hasRex2NFZU())) return false;
const Operand *p1 = &op1, *p2 = &op2;
if (p1->isMEM()) { std::swap(p1, p2); } else { if (p2->isMEM()) code |= 2; }
if (p1->isMEM()) XBYAK_THROW_RET(ERR_BAD_COMBINATION, false)
if (p2->isMEM()) {
const Reg& r = *static_cast<const Reg*>(p1);
Address addr = p2->getAddress();
const RegExp e = addr.getRegExp();
evexLeg(r, e.getBase(), e.getIndex(), d, type, sc);
writeCode(type, d, code);
addr.immSize = immSize;
opAddr(addr, r.getIdx());
} else {
evexLeg(static_cast<const Reg&>(op2), static_cast<const Reg&>(op1), Reg(), d, type, sc);
writeCode(type, d, code);
setModRM(3, op2.getIdx(), op1.getIdx());
}
return true;
}
void opRext(const Operand& op, int bit, int ext, uint64_t type, int code, bool disableRex = false, int immSize = 0, const Reg *d = 0)
{
int opBit = op.getBit();
if (disableRex && opBit == 64) opBit = 32;
const Reg r(ext, Operand::REG, opBit);
if ((type & T_APX) && op.hasRex2NFZU() && opROO(d ? *d : Reg(0, Operand::REG, opBit), op, r, type, code)) return;
if (op.isMEM()) {
opMR(op.getAddress(immSize), r, type, code);
} else if (op.isREG(bit)) {
opRR(r, op.getReg().changeBit(opBit), type, code);
} else {
XBYAK_THROW(ERR_BAD_COMBINATION)
}
}
void opSetCC(const Operand& op, int ext)
{
if (opROO(Reg(), op, Reg(), T_APX|T_ZU|T_F2, 0x40 | ext)) return;
opRext(op, 8, 0, T_0F, 0x90 | ext);
}
void opShift(const Operand& op, int imm, int ext, const Reg *d = 0)
{
if (d == 0) verifyMemHasSize(op);
if (d && op.getBit() != 0 && d->getBit() != op.getBit()) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
uint64_t type = T_APX|T_CODE1_IF1; if (ext & 8) type |= T_NF; if (d) type |= T_ND1;
opRext(op, 0, ext&7, type, (0xC0 | ((imm == 1 ? 1 : 0) << 4)), false, (imm != 1) ? 1 : 0, d);
if (imm != 1) db(imm);
}
void opShift(const Operand& op, const Reg8& _cl, int ext, const Reg *d = 0)
{
if (_cl.getIdx() != Operand::CL) XBYAK_THROW(ERR_BAD_COMBINATION)
if (d && op.getBit() != 0 && d->getBit() != op.getBit()) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
uint64_t type = T_APX|T_CODE1_IF1; if (ext & 8) type |= T_NF; if (d) type |= T_ND1;
opRext(op, 0, ext&7, type, 0xD2, false, 0, d);
}
// condR assumes that op.isREG() is true
void opRO(const Reg& r, const Operand& op, uint64_t type, int code, bool condR = true, int immSize = 0)
{
if (op.isMEM()) {
opMR(op.getAddress(immSize), r, type, code);
} else if (condR) {
opRR(r, op.getReg(), type, code);
} else {
XBYAK_THROW(ERR_BAD_COMBINATION)
}
}
void opShxd(const Reg& d, const Operand& op, const Reg& reg, uint8_t imm, int code, int code2, const Reg8 *_cl = 0)
{
if (_cl && _cl->getIdx() != Operand::CL) XBYAK_THROW(ERR_BAD_COMBINATION)
if (!reg.isREG(16|i32e)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
int immSize = _cl ? 0 : 1;
if (_cl) code |= 1;
uint64_t type = T_APX | T_NF;
if (d.isREG()) type |= T_ND1;
if (!opROO(d, op, reg, type, _cl ? code : code2, immSize)) {
opRO(reg, op, T_0F, code, true, immSize);
}
if (!_cl) db(imm);
}
// (REG, REG|MEM), (MEM, REG)
void opRO_MR(const Operand& op1, const Operand& op2, int code)
{
if (op2.isMEM()) {
if (!op1.isREG()) XBYAK_THROW(ERR_BAD_COMBINATION)
opMR(op2.getAddress(), op1.getReg(), 0, code | 2);
} else {
opRO(static_cast<const Reg&>(op2), op1, 0, code, op1.getKind() == op2.getKind());
}
}
uint32_t getImmBit(const Operand& op, uint32_t imm)
{
verifyMemHasSize(op);
uint32_t immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32;
if (op.isBit(8)) immBit = 8;
if (op.getBit() < immBit) XBYAK_THROW_RET(ERR_IMM_IS_TOO_BIG, 0)
if (op.isBit(32|64) && immBit == 16) immBit = 32; /* don't use MEM16 if 32/64bit mode */
return immBit;
}
// (REG|MEM, IMM)
void opOI(const Operand& op, uint32_t imm, int code, int ext)
{
uint32_t immBit = getImmBit(op, imm);
if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al
rex(op);
db(code | 4 | (immBit == 8 ? 0 : 1));
} else {
int tmp = immBit < (std::min)(op.getBit(), 32U) ? 2 : 0;
opRext(op, 0, ext, 0, 0x80 | tmp, false, immBit / 8);
}
db(imm, immBit / 8);
}
// (r, r/m, imm)
void opROI(const Reg& d, const Operand& op, uint32_t imm, uint64_t type, int ext)
{
uint32_t immBit = getImmBit(d, imm);
int code = immBit < (std::min)(d.getBit(), 32U) ? 2 : 0;
opROO(d, op, Reg(ext, Operand::REG, d.getBit()), type, 0x80 | code, immBit / 8);
db(imm, immBit / 8);
}
void opIncDec(const Reg& d, const Operand& op, int ext)
{
#ifdef XBYAK64
if (d.isREG()) {
int code = d.isBit(8) ? 0xFE : 0xFF;
uint64_t type = T_APX|T_NF|T_ND1;
if (d.isBit(16)) type |= T_66;
opROO(d, op, Reg(ext, Operand::REG, d.getBit()), type, code);
return;
}
#else
(void)d;
#endif
verifyMemHasSize(op);
#ifndef XBYAK64
if (op.isREG() && !op.isBit(8)) {
rex(op); db((ext ? 0x48 : 0x40) | op.getIdx());
return;
}
#endif
opRext(op, op.getBit(), ext, 0, 0xFE);
}
void opPushPop(const Operand& op, int code, int ext, int alt)
{
if (op.isREG() && op.hasRex2()) {
const Reg& r = static_cast<const Reg&>(op);
rex2(0, rexRXB(3, 0, Reg(), r), Reg(), r);
db(alt);
return;
}
int bit = op.getBit();
if (bit == 16 || bit == BIT) {
if (bit == 16) db(0x66);
if (op.isREG()) {
if (op.getReg().getIdx() >= 8) db(0x41);
db(alt | (op.getIdx() & 7));
return;
}
if (op.isMEM()) {
opMR(op.getAddress(), Reg(ext, Operand::REG, 32), 0, code);
return;
}
}
XBYAK_THROW(ERR_BAD_COMBINATION)
}
void verifyMemHasSize(const Operand& op) const
{
if (op.isMEM() && op.getBit() == 0) XBYAK_THROW(ERR_MEM_SIZE_IS_NOT_SPECIFIED)
}
/*
mov(r, imm) = db(imm, mov_imm(r, imm))
*/
int mov_imm(const Reg& reg, uint64_t imm)
{
int bit = reg.getBit();
const int idx = reg.getIdx();
int code = 0xB0 | ((bit == 8 ? 0 : 1) << 3);
if (bit == 64 && (imm & ~uint64_t(0xffffffffu)) == 0) {
rex(Reg32(idx));
bit = 32;
} else {
rex(reg);
if (bit == 64 && inner::IsInInt32(imm)) {
db(0xC7);
code = 0xC0;
bit = 32;
}
}
db(code | (idx & 7));
return bit / 8;
}
template<class T>
void putL_inner(T& label, bool relative = false, size_t disp = 0)
{
const int jmpSize = relative ? 4 : (int)sizeof(size_t);
if (isAutoGrow() && size_ + 16 >= maxSize_) growMemory();
size_t offset = 0;
if (labelMgr_.getOffset(&offset, label)) {
if (relative) {
db(inner::VerifyInInt32(offset + disp - size_ - jmpSize), jmpSize);
} else if (isAutoGrow()) {
db(uint64_t(0), jmpSize);
save(size_ - jmpSize, offset, jmpSize, inner::LaddTop);
} else {
db(size_t(top_) + offset, jmpSize);
}
return;
}
db(uint64_t(0), jmpSize);
JmpLabel jmp(size_, jmpSize, (relative ? inner::LasIs : isAutoGrow() ? inner::LaddTop : inner::Labs), disp);
labelMgr_.addUndefinedLabel(label, jmp);
}
void opMovxx(const Reg& reg, const Operand& op, uint8_t code)
{
if (op.isBit(32)) XBYAK_THROW(ERR_BAD_COMBINATION)
int w = op.isBit(16);
if (!(reg.isREG() && (reg.getBit() > op.getBit()))) XBYAK_THROW(ERR_BAD_COMBINATION)
opRO(reg, op, T_0F, code | w);
}
void opFpuMem(const Address& addr, uint8_t m16, uint8_t m32, uint8_t m64, uint8_t ext, uint8_t m64ext)
{
if (addr.is64bitDisp()) XBYAK_THROW(ERR_CANT_USE_64BIT_DISP)
uint8_t code = addr.isBit(16) ? m16 : addr.isBit(32) ? m32 : addr.isBit(64) ? m64 : 0;
if (!code) XBYAK_THROW(ERR_BAD_MEM_SIZE)
if (m64ext && addr.isBit(64)) ext = m64ext;
rex(addr, st0);
db(code);
opAddr(addr, ext);
}
// use code1 if reg1 == st0
// use code2 if reg1 != st0 && reg2 == st0
void opFpuFpu(const Fpu& reg1, const Fpu& reg2, uint32_t code1, uint32_t code2)
{
uint32_t code = reg1.getIdx() == 0 ? code1 : reg2.getIdx() == 0 ? code2 : 0;
if (!code) XBYAK_THROW(ERR_BAD_ST_COMBINATION)
db(uint8_t(code >> 8));
db(uint8_t(code | (reg1.getIdx() | reg2.getIdx())));
}
void opFpu(const Fpu& reg, uint8_t code1, uint8_t code2)
{
db(code1); db(code2 | reg.getIdx());
}
void opVex(const Reg& r, const Operand *p1, const Operand& op2, uint64_t type, int code, int imm8 = NONE)
{
if (op2.isMEM()) {
Address addr = op2.getAddress();
const RegExp& regExp = addr.getRegExp();
const Reg& base = regExp.getBase();
const Reg& index = regExp.getIndex();
if (BIT == 64 && addr.is32bit()) db(0x67);
int disp8N = 0;
if ((type & (T_MUST_EVEX|T_MEM_EVEX)) || r.hasEvex() || (p1 && p1->hasEvex()) || addr.isBroadcast() || addr.getOpmaskIdx() || addr.hasRex2()) {
int aaa = addr.getOpmaskIdx();
if (aaa && !(type & T_M_K)) XBYAK_THROW(ERR_INVALID_OPMASK_WITH_MEMORY)
bool b = false;
if (addr.isBroadcast()) {
if (!(type & (T_B32 | T_B64))) XBYAK_THROW(ERR_INVALID_BROADCAST)
b = true;
}
int VL = regExp.isVsib() ? index.getBit() : 0;
disp8N = evex(r, base, p1, type, code, &index, b, aaa, VL, index.isSIMD() && index.isExtIdx2());
} else {
vex(r, base, p1, type, code, index.isExtIdx());
}
if (type & T_VSIB) addr.permitVsib = true;
if (disp8N) addr.disp8N = disp8N;
if (imm8 != NONE) addr.immSize = 1;
opAddr(addr, r.getIdx());
} else {
const Reg& base = op2.getReg();
if ((type & T_MUST_EVEX) || r.hasEvex() || (p1 && p1->hasEvex()) || base.hasEvex()) {
evex(r, base, p1, type, code);
} else {
vex(r, base, p1, type, code);
}
setModRM(3, r.getIdx(), base.getIdx());
}
if (imm8 != NONE) db(imm8);
}
// (r, r, r/m)
// opRRO(a, b, c) == opROO(b, c, a)
void opRRO(const Reg& d, const Reg& r1, const Operand& op2, uint64_t type, uint8_t code, int imm8 = NONE)
{
const unsigned int bit = d.getBit();
if (r1.getBit() != bit || (op2.isREG() && op2.getBit() != bit)) XBYAK_THROW(ERR_BAD_COMBINATION)
type |= (bit == 64) ? T_W1 : T_W0;
if (d.hasRex2() || r1.hasRex2() || op2.hasRex2() || d.getNF()) {
opROO(r1, op2, d, type, code);
if (imm8 != NONE) db(imm8);
} else {
opVex(d, &r1, op2, type, code, imm8);
}
}
void opAVX_X_X_XM(const Xmm& x1, const Operand& op1, const Operand& op2, uint64_t type, int code, int imm8 = NONE)
{
const Xmm *x2 = static_cast<const Xmm*>(&op1);
const Operand *op = &op2;
if (op2.isNone()) { // (x1, op1) -> (x1, x1, op1)
x2 = &x1;
op = &op1;
}
// (x1, x2, op)
if (!((x1.isXMM() && x2->isXMM()) || ((type & T_YMM) && ((x1.isYMM() && x2->isYMM()) || (x1.isZMM() && x2->isZMM()))))) XBYAK_THROW(ERR_BAD_COMBINATION)
opVex(x1, x2, *op, type, code, imm8);
}
void opAVX_K_X_XM(const Opmask& k, const Xmm& x2, const Operand& op3, uint64_t type, int code, int imm8 = NONE)
{
if (!op3.isMEM() && (x2.getKind() != op3.getKind())) XBYAK_THROW(ERR_BAD_COMBINATION)
opVex(k, &x2, op3, type, code, imm8);
}
// (x, x/m), (y, x/m256), (z, y/m)
void checkCvt1(const Operand& x, const Operand& op) const
{
if (!op.isMEM() && !(x.is(Operand::XMM | Operand::YMM) && op.isXMM()) && !(x.isZMM() && op.isYMM())) XBYAK_THROW(ERR_BAD_COMBINATION)
}
// (x, x/m), (x, y/m256), (y, z/m)
void checkCvt2(const Xmm& x, const Operand& op) const
{
if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) XBYAK_THROW(ERR_BAD_COMBINATION)
}
void opCvt(const Xmm& x, const Operand& op, uint64_t type, int code)
{
Operand::Kind kind = x.isXMM() ? (op.isBit(256) ? Operand::YMM : Operand::XMM) : Operand::ZMM;
opVex(x.copyAndSetKind(kind), &xm0, op, type, code);
}
void opCvt2(const Xmm& x, const Operand& op, uint64_t type, int code)
{
checkCvt2(x, op);
opCvt(x, op, type, code);
}
void opCvt3(const Xmm& x1, const Xmm& x2, const Operand& op, uint64_t type, uint64_t type64, uint64_t type32, uint8_t code)
{
if (!(x1.isXMM() && x2.isXMM() && (op.isREG(i32e) || op.isMEM()))) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
Xmm x(op.getIdx());
const Operand *p = op.isREG() ? &x : &op;
opVex(x1, &x2, *p, type | (op.isBit(64) ? type64 : type32), code);
}
// (x, x/y/xword/yword), (y, z/m)
void checkCvt4(const Xmm& x, const Operand& op) const
{
if (!(x.isXMM() && op.is(Operand::XMM | Operand::YMM | Operand::MEM) && op.isBit(128|256)) && !(x.isYMM() && op.is(Operand::ZMM | Operand::MEM))) XBYAK_THROW(ERR_BAD_COMBINATION)
}
// (x, x/y/z/xword/yword/zword)
void opCvt5(const Xmm& x, const Operand& op, uint64_t type, int code)
{
if (!(x.isXMM() && op.isBit(128|256|512))) XBYAK_THROW(ERR_BAD_COMBINATION)
Operand::Kind kind = op.isBit(128) ? Operand::XMM : op.isBit(256) ? Operand::YMM : Operand::ZMM;
opVex(x.copyAndSetKind(kind), &xm0, op, type, code);
}
const Xmm& cvtIdx0(const Operand& x) const
{
return x.isZMM() ? zm0 : x.isYMM() ? ym0 : xm0;
}
// support (x, x/m, imm), (y, y/m, imm)
void opAVX_X_XM_IMM(const Xmm& x, const Operand& op, uint64_t type, int code, int imm8 = NONE)
{
opAVX_X_X_XM(x, cvtIdx0(x), op, type, code, imm8);
}
void opCnt(const Reg& reg, const Operand& op, uint8_t code)
{
if (reg.isBit(8)) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM());
if (!is16bit && !(reg.isREG(i32e) && (op.isREG(reg.getBit()) || op.isMEM()))) XBYAK_THROW(ERR_BAD_COMBINATION)
if (is16bit) db(0x66);
opRO(reg.changeBit(i32e == 32 ? 32 : reg.getBit()), op, T_F3 | T_0F, code);
}
void opGather(const Xmm& x1, const Address& addr, const Xmm& x2, uint64_t type, uint8_t code, int mode)
{
const RegExp& regExp = addr.getRegExp();
if (!regExp.isVsib(128 | 256)) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING)
const int y_vx_y = 0;
const int y_vy_y = 1;
// const int x_vy_x = 2;
const bool isAddrYMM = regExp.getIndex().getBit() == 256;
if (!x1.isXMM() || isAddrYMM || !x2.isXMM()) {
bool isOK = false;
if (mode == y_vx_y) {
isOK = x1.isYMM() && !isAddrYMM && x2.isYMM();
} else if (mode == y_vy_y) {
isOK = x1.isYMM() && isAddrYMM && x2.isYMM();
} else { // x_vy_x
isOK = !x1.isYMM() && isAddrYMM && !x2.isYMM();
}
if (!isOK) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING)
}
int i1 = x1.getIdx();
int i2 = regExp.getIndex().getIdx();
int i3 = x2.getIdx();
if (i1 == i2 || i1 == i3 || i2 == i3) XBYAK_THROW(ERR_SAME_REGS_ARE_INVALID);
opAVX_X_X_XM(isAddrYMM ? Ymm(i1) : x1, isAddrYMM ? Ymm(i3) : x2, addr, type, code);
}
enum {
xx_yy_zz = 0,
xx_yx_zy = 1,
xx_xy_yz = 2
};
void checkGather2(const Xmm& x1, const Reg& x2, int mode) const
{
if (x1.isXMM() && x2.isXMM()) return;
switch (mode) {
case xx_yy_zz: if ((x1.isYMM() && x2.isYMM()) || (x1.isZMM() && x2.isZMM())) return;
break;
case xx_yx_zy: if ((x1.isYMM() && x2.isXMM()) || (x1.isZMM() && x2.isYMM())) return;
break;
case xx_xy_yz: if ((x1.isXMM() && x2.isYMM()) || (x1.isYMM() && x2.isZMM())) return;
break;
}
XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING)
}
void opGather2(const Xmm& x, const Address& addr, uint64_t type, uint8_t code, int mode)
{
if (x.hasZero()) XBYAK_THROW(ERR_INVALID_ZERO)
const RegExp& regExp = addr.getRegExp();
checkGather2(x, regExp.getIndex(), mode);
int maskIdx = x.getOpmaskIdx();
if ((type & T_M_K) && addr.getOpmaskIdx()) maskIdx = addr.getOpmaskIdx();
if (maskIdx == 0) XBYAK_THROW(ERR_K0_IS_INVALID);
if (!(type & T_M_K) && x.getIdx() == regExp.getIndex().getIdx()) XBYAK_THROW(ERR_SAME_REGS_ARE_INVALID);
opVex(x, 0, addr, type, code);
}
/*
xx_xy_yz ; mode = true
xx_xy_xz ; mode = false
*/
void opVmov(const Operand& op, const Xmm& x, uint64_t type, uint8_t code, bool mode)
{
if (mode) {
if (!op.isMEM() && !((op.isXMM() && x.isXMM()) || (op.isXMM() && x.isYMM()) || (op.isYMM() && x.isZMM()))) XBYAK_THROW(ERR_BAD_COMBINATION)
} else {
if (!op.isMEM() && !op.isXMM()) XBYAK_THROW(ERR_BAD_COMBINATION)
}
opVex(x, 0, op, type, code);
}
void opGatherFetch(const Address& addr, const Xmm& x, uint64_t type, uint8_t code, Operand::Kind kind)
{
if (addr.hasZero()) XBYAK_THROW(ERR_INVALID_ZERO)
if (addr.getRegExp().getIndex().getKind() != kind) XBYAK_THROW(ERR_BAD_VSIB_ADDRESSING)
opVex(x, 0, addr, type, code);
}
void opEncoding(const Xmm& x1, const Xmm& x2, const Operand& op, uint64_t type, int code, PreferredEncoding encoding)
{
opAVX_X_X_XM(x1, x2, op, type | orEvexIf(encoding), code);
}
int orEvexIf(PreferredEncoding encoding) {
if (encoding == DefaultEncoding) {
encoding = defaultEncoding_;
}
if (encoding == EvexEncoding) {
#ifdef XBYAK_DISABLE_AVX512
XBYAK_THROW(ERR_EVEX_IS_INVALID)
#endif
return T_MUST_EVEX;
}
return 0;
}
void opInOut(const Reg& a, const Reg& d, uint8_t code)
{
if (a.getIdx() == Operand::AL && d.getIdx() == Operand::DX && d.getBit() == 16) {
switch (a.getBit()) {
case 8: db(code); return;
case 16: db(0x66); db(code + 1); return;
case 32: db(code + 1); return;
}
}
XBYAK_THROW(ERR_BAD_COMBINATION)
}
void opInOut(const Reg& a, uint8_t code, uint8_t v)
{
if (a.getIdx() == Operand::AL) {
switch (a.getBit()) {
case 8: db(code); db(v); return;
case 16: db(0x66); db(code + 1); db(v); return;
case 32: db(code + 1); db(v); return;
}
}
XBYAK_THROW(ERR_BAD_COMBINATION)
}
void opCcmp(const Operand& op1, const Operand& op2, int dfv, int code, int sc) // cmp = 0x38, test = 0x84
{
if (dfv < 0 || 15 < dfv) XBYAK_THROW(ERR_INVALID_DFV)
opROO(Reg(15 - dfv, Operand::REG, (op1.getBit() | op2.getBit())), op1, op2, T_APX|T_CODE1_IF1, code, 0, sc);
}
void opCcmpi(const Operand& op, int imm, int dfv, int sc)
{
if (dfv < 0 || 15 < dfv) XBYAK_THROW(ERR_INVALID_DFV)
uint32_t immBit = getImmBit(op, imm);
uint32_t opBit = op.getBit();
int tmp = immBit < (std::min)(opBit, 32U) ? 2 : 0;
opROO(Reg(15 - dfv, Operand::REG, opBit), op, Reg(15, Operand::REG, opBit), T_APX|T_CODE1_IF1, 0x80 | tmp, immBit / 8, sc);
db(imm, immBit / 8);
}
void opTesti(const Operand& op, int imm, int dfv, int sc)
{
if (dfv < 0 || 15 < dfv) XBYAK_THROW(ERR_INVALID_DFV)
uint32_t opBit = op.getBit();
if (opBit == 0) XBYAK_THROW(ERR_MEM_SIZE_IS_NOT_SPECIFIED);
int immBit = (std::min)(opBit, 32U);
opROO(Reg(15 - dfv, Operand::REG, opBit), op, Reg(0, Operand::REG, opBit), T_APX|T_CODE1_IF1, 0xF6, immBit / 8, sc);
db(imm, immBit / 8);
}
void opCfcmov(const Reg& d, const Operand& op1, const Operand& op2, int code)
{
const int dBit = d.getBit();
const int op2Bit = op2.getBit();
if (dBit > 0 && op2Bit > 0 && dBit != op2Bit) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
if (op1.isBit(8) || op2Bit == 8) XBYAK_THROW(ERR_BAD_SIZE_OF_REGISTER)
if (op2.isMEM()) {
if (op1.isMEM()) XBYAK_THROW(ERR_BAD_COMBINATION)
uint64_t type = dBit > 0 ? (T_MUST_EVEX|T_NF) : T_MUST_EVEX;
opROO(d, op2, op1, type, code);
} else {
opROO(d, op1, static_cast<const Reg&>(op2)|T_nf, T_MUST_EVEX|T_NF, code);
}
}
#ifdef XBYAK64
void opAMX(const Tmm& t1, const Address& addr, uint64_t type, int code)
{
// require both base and index
Address addr2 = addr.cloneNoOptimize();
const RegExp exp = addr2.getRegExp();
if (exp.getBase().getBit() == 0 || exp.getIndex().getBit() == 0) XBYAK_THROW(ERR_NOT_SUPPORTED)
if (opROO(Reg(), addr2, t1, T_APX|type, code)) return;
opVex(t1, &tmm0, addr2, type, code);
}
#endif
// (reg32e/mem, k) if rev else (k, k/mem/reg32e)
// size = 8, 16, 32, 64
void opKmov(const Opmask& k, const Operand& op, bool rev, int size)
{
int code = 0;
bool isReg = op.isREG(size < 64 ? 32 : 64);
if (rev) {
code = isReg ? 0x93 : op.isMEM() ? 0x91 : 0;
} else {
code = op.isOPMASK() || op.isMEM() ? 0x90 : isReg ? 0x92 : 0;
}
if (code == 0) XBYAK_THROW(ERR_BAD_COMBINATION)
uint64_t type = T_0F;
switch (size) {
case 8: type |= T_W0|T_66; break;
case 16: type |= T_W0; break;
case 32: type |= isReg ? T_W0|T_F2 : T_W1|T_66; break;
case 64: type |= isReg ? T_W1|T_F2 : T_W1; break;
}
const Operand *p1 = &k, *p2 = &op;
if (code == 0x93) { std::swap(p1, p2); }
if (opROO(Reg(), *p2, *p1, T_APX|type, code)) return;
opVex(static_cast<const Reg&>(*p1), 0, *p2, T_L0|type, code);
}
void opEncodeKey(const Reg32& r1, const Reg32& r2, uint8_t code1, uint8_t code2)
{
if (r1.getIdx() < 8 && r2.getIdx() < 8) {
db(0xF3); db(0x0F); db(0x38); db(code1); setModRM(3, r1.getIdx(), r2.getIdx());
return;
}
opROO(Reg(), r2, r1, T_MUST_EVEX|T_F3, code2);
}
void opSSE_APX(const Xmm& x, const Operand& op, uint64_t type1, uint8_t code1, uint64_t type2, uint8_t code2, int imm = NONE)
{
if (x.getIdx() <= 15 && op.hasRex2() && opROO(Reg(), op, x, type2, code2, imm != NONE ? 1 : 0)) {
if (imm != NONE) db(imm);
return;
}
opSSE(x, op, type1, code1, isXMM_XMMorMEM, imm);
}
public:
unsigned int getVersion() const { return VERSION; }
using CodeArray::db;
const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7;
const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
const Ymm ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7;
const Zmm zmm0, zmm1, zmm2, zmm3, zmm4, zmm5, zmm6, zmm7;
const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7;
const Ymm &ym0, &ym1, &ym2, &ym3, &ym4, &ym5, &ym6, &ym7;
const Zmm &zm0, &zm1, &zm2, &zm3, &zm4, &zm5, &zm6, &zm7;
const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi;
const Reg16 ax, cx, dx, bx, sp, bp, si, di;
const Reg8 al, cl, dl, bl, ah, ch, dh, bh;
const AddressFrame ptr, byte, word, dword, qword, xword, yword, zword; // xword is same as oword of NASM
const AddressFrame ptr_b, xword_b, yword_b, zword_b; // broadcast such as {1to2}, {1to4}, {1to8}, {1to16}, {b}
const Fpu st0, st1, st2, st3, st4, st5, st6, st7;
const Opmask k0, k1, k2, k3, k4, k5, k6, k7;
const BoundsReg bnd0, bnd1, bnd2, bnd3;
const EvexModifierRounding T_sae, T_rn_sae, T_rd_sae, T_ru_sae, T_rz_sae; // {sae}, {rn-sae}, {rd-sae}, {ru-sae}, {rz-sae}
const EvexModifierZero T_z; // {z}
const ApxFlagNF T_nf;
const ApxFlagZU T_zu;
#ifdef XBYAK64
const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15;
const Reg64 r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31;
const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d;
const Reg32 r16d, r17d, r18d, r19d, r20d, r21d, r22d, r23d, r24d, r25d, r26d, r27d, r28d, r29d, r30d, r31d;
const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w;
const Reg16 r16w, r17w, r18w, r19w, r20w, r21w, r22w, r23w, r24w, r25w, r26w, r27w, r28w, r29w, r30w, r31w;
const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b;
const Reg8 r16b, r17b, r18b, r19b, r20b, r21b, r22b, r23b, r24b, r25b, r26b, r27b, r28b, r29b, r30b, r31b;
const Reg8 spl, bpl, sil, dil;
const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
const Xmm xmm16, xmm17, xmm18, xmm19, xmm20, xmm21, xmm22, xmm23;
const Xmm xmm24, xmm25, xmm26, xmm27, xmm28, xmm29, xmm30, xmm31;
const Ymm ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15;
const Ymm ymm16, ymm17, ymm18, ymm19, ymm20, ymm21, ymm22, ymm23;
const Ymm ymm24, ymm25, ymm26, ymm27, ymm28, ymm29, ymm30, ymm31;
const Zmm zmm8, zmm9, zmm10, zmm11, zmm12, zmm13, zmm14, zmm15;
const Zmm zmm16, zmm17, zmm18, zmm19, zmm20, zmm21, zmm22, zmm23;
const Zmm zmm24, zmm25, zmm26, zmm27, zmm28, zmm29, zmm30, zmm31;
const Tmm tmm0, tmm1, tmm2, tmm3, tmm4, tmm5, tmm6, tmm7;
const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; // for my convenience
const Xmm &xm16, &xm17, &xm18, &xm19, &xm20, &xm21, &xm22, &xm23;
const Xmm &xm24, &xm25, &xm26, &xm27, &xm28, &xm29, &xm30, &xm31;
const Ymm &ym8, &ym9, &ym10, &ym11, &ym12, &ym13, &ym14, &ym15;
const Ymm &ym16, &ym17, &ym18, &ym19, &ym20, &ym21, &ym22, &ym23;
const Ymm &ym24, &ym25, &ym26, &ym27, &ym28, &ym29, &ym30, &ym31;
const Zmm &zm8, &zm9, &zm10, &zm11, &zm12, &zm13, &zm14, &zm15;
const Zmm &zm16, &zm17, &zm18, &zm19, &zm20, &zm21, &zm22, &zm23;
const Zmm &zm24, &zm25, &zm26, &zm27, &zm28, &zm29, &zm30, &zm31;
const RegRip rip;
#endif
#ifndef XBYAK_DISABLE_SEGMENT
const Segment es, cs, ss, ds, fs, gs;
#endif
private:
bool isDefaultJmpNEAR_;
PreferredEncoding defaultEncoding_;
public:
void L(const std::string& label) { labelMgr_.defineSlabel(label); }
void L(Label& label) { labelMgr_.defineClabel(label); }
Label L() { Label label; L(label); return label; }
void inLocalLabel() { labelMgr_.enterLocal(); }
void outLocalLabel() { labelMgr_.leaveLocal(); }
/*
assign src to dst
require
dst : does not used by L()
src : used by L()
*/
void assignL(Label& dst, const Label& src) { labelMgr_.assign(dst, src); }
/*
put address of label to buffer
@note the put size is 4(32-bit), 8(64-bit)
*/
void putL(std::string label) { putL_inner(label); }
void putL(const Label& label) { putL_inner(label); }
// set default type of `jmp` of undefined label to T_NEAR
void setDefaultJmpNEAR(bool isNear) { isDefaultJmpNEAR_ = isNear; }
void jmp(const Operand& op, LabelType type = T_AUTO) { opJmpOp(op, type, 4); }
void jmp(std::string label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); }
void jmp(const char *label, LabelType type = T_AUTO) { jmp(std::string(label), type); }
void jmp(const Label& label, LabelType type = T_AUTO) { opJmp(label, type, 0xEB, 0xE9, 0); }
void jmp(const void *addr, LabelType type = T_AUTO) { opJmpAbs(addr, type, 0xEB, 0xE9); }
void call(const Operand& op, LabelType type = T_AUTO) { opJmpOp(op, type, 2); }
// call(string label), not const std::string&
void call(std::string label) { opJmp(label, T_NEAR, 0, 0xE8, 0); }
void call(const char *label) { call(std::string(label)); }
void call(const Label& label) { opJmp(label, T_NEAR, 0, 0xE8, 0); }
// call(function pointer)
#ifdef XBYAK_VARIADIC_TEMPLATE
template<class Ret, class... Params>
void call(Ret(*func)(Params...)) { call(reinterpret_cast<const void*>(func)); }
#endif
void call(const void *addr) { opJmpAbs(addr, T_NEAR, 0, 0xE8); }
void test(const Operand& op, const Reg& reg)
{
opRO(reg, op, 0, 0x84, op.getKind() == reg.getKind());
}
void test(const Operand& op, uint32_t imm)
{
verifyMemHasSize(op);
int immSize = (std::min)(op.getBit() / 8, 4U);
if (op.isREG() && op.getIdx() == 0) { // al, ax, eax
rex(op);
db(0xA8 | (op.isBit(8) ? 0 : 1));
} else {
opRext(op, 0, 0, 0, 0xF6, false, immSize);
}
db(imm, immSize);
}
void imul(const Reg& reg, const Operand& op, int imm)
{
int s = inner::IsInDisp8(imm) ? 1 : 0;
int immSize = s ? 1 : reg.isREG(16) ? 2 : 4;
uint8_t code = uint8_t(0x69 | (s << 1));
if (!opROO(Reg(), op, reg, T_APX|T_NF|T_ZU, code, immSize)) {
opRO(reg, op, 0, code, reg.getKind() == op.getKind(), immSize);
}
db(imm, immSize);
}
void push(const Operand& op) { opPushPop(op, 0xFF, 6, 0x50); }
void pop(const Operand& op) { opPushPop(op, 0x8F, 0, 0x58); }
void push(const AddressFrame& af, uint32_t imm)
{
if (af.bit_ == 8) {
db(0x6A); db(imm);
} else if (af.bit_ == 16) {
db(0x66); db(0x68); dw(imm);
} else {
db(0x68); dd(imm);
}
}
/* use "push(word, 4)" if you want "push word 4" */
void push(uint32_t imm)
{
if (inner::IsInDisp8(imm)) {
push(byte, imm);
} else {
push(dword, imm);
}
}
void mov(const Operand& op1, const Operand& op2)
{
const Reg *reg = 0;
const Address *addr = 0;
uint8_t code = 0;
if (op1.isREG() && op1.getIdx() == 0 && op2.isMEM()) { // mov eax|ax|al, [disp]
reg = &op1.getReg();
addr= &op2.getAddress();
code = 0xA0;
} else
if (op1.isMEM() && op2.isREG() && op2.getIdx() == 0) { // mov [disp], eax|ax|al
reg = &op2.getReg();
addr= &op1.getAddress();
code = 0xA2;
}
#ifdef XBYAK64
if (addr && addr->is64bitDisp()) {
if (code) {
rex(*reg);
db(op1.isREG(8) ? 0xA0 : op1.isREG() ? 0xA1 : op2.isREG(8) ? 0xA2 : 0xA3);
db(addr->getDisp(), 8);
} else {
XBYAK_THROW(ERR_BAD_COMBINATION)
}
} else
#else
if (code && addr->isOnlyDisp()) {
rex(*reg, *addr);
db(code | (reg->isBit(8) ? 0 : 1));
dd(static_cast<uint32_t>(addr->getDisp()));
} else
#endif
{
opRO_MR(op1, op2, 0x88);
}
}
void mov(const Operand& op, uint64_t imm)
{
if (op.isREG()) {
const int size = mov_imm(op.getReg(), imm);
db(imm, size);
} else if (op.isMEM()) {
verifyMemHasSize(op);
int immSize = op.getBit() / 8;
if (immSize <= 4) {
int64_t s = int64_t(imm) >> (immSize * 8);
if (s != 0 && s != -1) XBYAK_THROW(ERR_IMM_IS_TOO_BIG)
} else {
if (!inner::IsInInt32(imm)) XBYAK_THROW(ERR_IMM_IS_TOO_BIG)
immSize = 4;
}
opMR(op.getAddress(immSize), Reg(0, Operand::REG, op.getBit()), 0, 0xC6);
db(static_cast<uint32_t>(imm), immSize);
} else {
XBYAK_THROW(ERR_BAD_COMBINATION)
}
}
// The template is used to avoid ambiguity when the 2nd argument is 0.
// When the 2nd argument is 0 the call goes to
// `void mov(const Operand& op, uint64_t imm)`.
template <typename T1, typename T2>
void mov(const T1&, const T2 *) { T1::unexpected; }
void mov(const NativeReg& reg, const Label& label)
{
mov_imm(reg, dummyAddr);
putL(label);
}
void xchg(const Operand& op1, const Operand& op2)
{
const Operand *p1 = &op1, *p2 = &op2;
if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) {
p1 = &op2; p2 = &op1;
}
if (p1->isMEM()) XBYAK_THROW(ERR_BAD_COMBINATION)
if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0)
#ifdef XBYAK64
&& (p2->getIdx() != 0 || !p1->isREG(32))
#endif
) {
rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7));
return;
}
opRO(static_cast<const Reg&>(*p1), *p2, 0, 0x86 | (p1->isBit(8) ? 0 : 1), (p1->isREG() && (p1->getBit() == p2->getBit())));
}
#ifndef XBYAK_DISABLE_SEGMENT
void push(const Segment& seg)
{
switch (seg.getIdx()) {
case Segment::es: db(0x06); break;
case Segment::cs: db(0x0E); break;
case Segment::ss: db(0x16); break;
case Segment::ds: db(0x1E); break;
case Segment::fs: db(0x0F); db(0xA0); break;
case Segment::gs: db(0x0F); db(0xA8); break;
default:
assert(0);
}
}
void pop(const Segment& seg)
{
switch (seg.getIdx()) {
case Segment::es: db(0x07); break;
case Segment::cs: XBYAK_THROW(ERR_BAD_COMBINATION)
case Segment::ss: db(0x17); break;
case Segment::ds: db(0x1F); break;
case Segment::fs: db(0x0F); db(0xA1); break;
case Segment::gs: db(0x0F); db(0xA9); break;
default:
assert(0);
}
}
void putSeg(const Segment& seg)
{
switch (seg.getIdx()) {
case Segment::es: db(0x2E); break;
case Segment::cs: db(0x36); break;
case Segment::ss: db(0x3E); break;
case Segment::ds: db(0x26); break;
case Segment::fs: db(0x64); break;
case Segment::gs: db(0x65); break;
default:
assert(0);
}
}
void mov(const Operand& op, const Segment& seg)
{
opRO(Reg8(seg.getIdx()), op, 0, 0x8C, op.isREG(16|i32e));
}
void mov(const Segment& seg, const Operand& op)
{
opRO(Reg8(seg.getIdx()), op.isREG(16|i32e) ? static_cast<const Operand&>(op.getReg().cvt32()) : op, 0, 0x8E, op.isREG(16|i32e));
}
#endif
enum { NONE = 256 };
// constructor
CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0, Allocator *allocator = 0)
: CodeArray(maxSize, userPtr, allocator)
, mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7)
, xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7)
, ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7)
, zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7)
// for my convenience
, xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7)
, ym0(ymm0), ym1(ymm1), ym2(ymm2), ym3(ymm3), ym4(ymm4), ym5(ymm5), ym6(ymm6), ym7(ymm7)
, zm0(zmm0), zm1(zmm1), zm2(zmm2), zm3(zmm3), zm4(zmm4), zm5(zmm5), zm6(zmm6), zm7(zmm7)
, eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI)
, ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI)
, al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH)
, ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512)
, ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true)
, st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7)
, k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7)
, bnd0(0), bnd1(1), bnd2(2), bnd3(3)
, T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE)
, T_z()
, T_nf()
, T_zu()
#ifdef XBYAK64
, rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15)
, r16(Operand::R16), r17(Operand::R17), r18(Operand::R18), r19(Operand::R19), r20(Operand::R20), r21(Operand::R21), r22(Operand::R22), r23(Operand::R23), r24(Operand::R24), r25(Operand::R25), r26(Operand::R26), r27(Operand::R27), r28(Operand::R28), r29(Operand::R29), r30(Operand::R30), r31(Operand::R31)
, r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15)
, r16d(Operand::R16D), r17d(Operand::R17D), r18d(Operand::R18D), r19d(Operand::R19D), r20d(Operand::R20D), r21d(Operand::R21D), r22d(Operand::R22D), r23d(Operand::R23D), r24d(Operand::R24D), r25d(Operand::R25D), r26d(Operand::R26D), r27d(Operand::R27D), r28d(Operand::R28D), r29d(Operand::R29D), r30d(Operand::R30D), r31d(Operand::R31D)
, r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15)
, r16w(Operand::R16W), r17w(Operand::R17W), r18w(Operand::R18W), r19w(Operand::R19W), r20w(Operand::R20W), r21w(Operand::R21W), r22w(Operand::R22W), r23w(Operand::R23W), r24w(Operand::R24W), r25w(Operand::R25W), r26w(Operand::R26W), r27w(Operand::R27W), r28w(Operand::R28W), r29w(Operand::R29W), r30w(Operand::R30W), r31w(Operand::R31W)
, r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15)
, r16b(Operand::R16B), r17b(Operand::R17B), r18b(Operand::R18B), r19b(Operand::R19B), r20b(Operand::R20B), r21b(Operand::R21B), r22b(Operand::R22B), r23b(Operand::R23B), r24b(Operand::R24B), r25b(Operand::R25B), r26b(Operand::R26B), r27b(Operand::R27B), r28b(Operand::R28B), r29b(Operand::R29B), r30b(Operand::R30B), r31b(Operand::R31B)
, spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true)
, xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15)
, xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23)
, xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31)
, ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15)
, ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23)
, ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31)
, zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15)
, zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23)
, zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31)
, tmm0(0), tmm1(1), tmm2(2), tmm3(3), tmm4(4), tmm5(5), tmm6(6), tmm7(7)
// for my convenience
, xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15)
, xm16(xmm16), xm17(xmm17), xm18(xmm18), xm19(xmm19), xm20(xmm20), xm21(xmm21), xm22(xmm22), xm23(xmm23)
, xm24(xmm24), xm25(xmm25), xm26(xmm26), xm27(xmm27), xm28(xmm28), xm29(xmm29), xm30(xmm30), xm31(xmm31)
, ym8(ymm8), ym9(ymm9), ym10(ymm10), ym11(ymm11), ym12(ymm12), ym13(ymm13), ym14(ymm14), ym15(ymm15)
, ym16(ymm16), ym17(ymm17), ym18(ymm18), ym19(ymm19), ym20(ymm20), ym21(ymm21), ym22(ymm22), ym23(ymm23)
, ym24(ymm24), ym25(ymm25), ym26(ymm26), ym27(ymm27), ym28(ymm28), ym29(ymm29), ym30(ymm30), ym31(ymm31)
, zm8(zmm8), zm9(zmm9), zm10(zmm10), zm11(zmm11), zm12(zmm12), zm13(zmm13), zm14(zmm14), zm15(zmm15)
, zm16(zmm16), zm17(zmm17), zm18(zmm18), zm19(zmm19), zm20(zmm20), zm21(zmm21), zm22(zmm22), zm23(zmm23)
, zm24(zmm24), zm25(zmm25), zm26(zmm26), zm27(zmm27), zm28(zmm28), zm29(zmm29), zm30(zmm30), zm31(zmm31)
, rip()
#endif
#ifndef XBYAK_DISABLE_SEGMENT
, es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs)
#endif
, isDefaultJmpNEAR_(false)
, defaultEncoding_(EvexEncoding)
{
labelMgr_.set(this);
}
void reset()
{
ClearError();
resetSize();
labelMgr_.reset();
labelMgr_.set(this);
}
bool hasUndefinedLabel() const { return labelMgr_.hasUndefSlabel() || labelMgr_.hasUndefClabel(); }
/*
MUST call ready() to complete generating code if you use AutoGrow mode.
It is not necessary for the other mode if hasUndefinedLabel() is true.
*/
void ready(ProtectMode mode = PROTECT_RWE)
{
if (hasUndefinedLabel()) XBYAK_THROW(ERR_LABEL_IS_NOT_FOUND)
if (isAutoGrow()) {
calcJmpAddress();
if (useProtect()) setProtectMode(mode);
}
}
// set read/exec
void readyRE() { return ready(PROTECT_RE); }
#ifdef XBYAK_TEST
void dump(bool doClear = true)
{
CodeArray::dump();
if (doClear) size_ = 0;
}
#endif
#ifdef XBYAK_UNDEF_JNL
#undef jnl
#endif
// set default encoding to select Vex or Evex
void setDefaultEncoding(PreferredEncoding encoding) { defaultEncoding_ = encoding; }
void sha1msg12(const Xmm& x, const Operand& op)
{
opROO(Reg(), op, x, T_MUST_EVEX, 0xD9);
}
void bswap(const Reg32e& r)
{
int idx = r.getIdx();
uint8_t rex = (r.isREG(64) ? 8 : 0) | ((idx & 8) ? 1 : 0);
if (idx >= 16) {
db(0xD5); db((1<<7) | (idx & 16) | rex);
} else {
if (rex) db(0x40 | rex);
db(0x0F);
}
db(0xC8 + (idx & 7));
}
/*
use single byte nop if useMultiByteNop = false
*/
void nop(size_t size = 1, bool useMultiByteNop = true)
{
if (!useMultiByteNop) {
for (size_t i = 0; i < size; i++) {
db(0x90);
}
return;
}
/*
Intel Architectures Software Developer's Manual Volume 2
recommended multi-byte sequence of NOP instruction
AMD and Intel seem to agree on the same sequences for up to 9 bytes:
https://support.amd.com/TechDocs/55723_SOG_Fam_17h_Processors_3.00.pdf
*/
static const uint8_t nopTbl[9][9] = {
{0x90},
{0x66, 0x90},
{0x0F, 0x1F, 0x00},
{0x0F, 0x1F, 0x40, 0x00},
{0x0F, 0x1F, 0x44, 0x00, 0x00},
{0x66, 0x0F, 0x1F, 0x44, 0x00, 0x00},
{0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
{0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
const size_t n = sizeof(nopTbl) / sizeof(nopTbl[0]);
while (size > 0) {
size_t len = (std::min)(n, size);
const uint8_t *seq = nopTbl[len - 1];
db(seq, len);
size -= len;
}
}
#ifndef XBYAK_DONT_READ_LIST
#include "xbyak_mnemonic.h"
/*
use single byte nop if useMultiByteNop = false
*/
void align(size_t x = 16, bool useMultiByteNop = true)
{
if (x == 1) return;
if (x < 1 || (x & (x - 1))) XBYAK_THROW(ERR_BAD_ALIGN)
if (isAutoGrow()) XBYAK_THROW(ERR_BAD_ALIGN)
size_t remain = size_t(getCurr()) % x;
if (remain) {
nop(x - remain, useMultiByteNop);
}
}
#endif
};
template <>
inline void CodeGenerator::mov(const NativeReg& reg, const char *label) // can't use std::string
{
assert(label);
mov_imm(reg, dummyAddr);
putL(label);
}
namespace util {
static const XBYAK_CONSTEXPR Mmx mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7);
static const XBYAK_CONSTEXPR Xmm xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7);
static const XBYAK_CONSTEXPR Ymm ymm0(0), ymm1(1), ymm2(2), ymm3(3), ymm4(4), ymm5(5), ymm6(6), ymm7(7);
static const XBYAK_CONSTEXPR Zmm zmm0(0), zmm1(1), zmm2(2), zmm3(3), zmm4(4), zmm5(5), zmm6(6), zmm7(7);
static const XBYAK_CONSTEXPR Reg32 eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI);
static const XBYAK_CONSTEXPR Reg16 ax(Operand::AX), cx(Operand::CX), dx(Operand::DX), bx(Operand::BX), sp(Operand::SP), bp(Operand::BP), si(Operand::SI), di(Operand::DI);
static const XBYAK_CONSTEXPR Reg8 al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH);
static const XBYAK_CONSTEXPR AddressFrame ptr(0), byte(8), word(16), dword(32), qword(64), xword(128), yword(256), zword(512);
static const XBYAK_CONSTEXPR AddressFrame ptr_b(0, true), xword_b(128, true), yword_b(256, true), zword_b(512, true);
static const XBYAK_CONSTEXPR Fpu st0(0), st1(1), st2(2), st3(3), st4(4), st5(5), st6(6), st7(7);
static const XBYAK_CONSTEXPR Opmask k0(0), k1(1), k2(2), k3(3), k4(4), k5(5), k6(6), k7(7);
static const XBYAK_CONSTEXPR BoundsReg bnd0(0), bnd1(1), bnd2(2), bnd3(3);
static const XBYAK_CONSTEXPR EvexModifierRounding T_sae(EvexModifierRounding::T_SAE), T_rn_sae(EvexModifierRounding::T_RN_SAE), T_rd_sae(EvexModifierRounding::T_RD_SAE), T_ru_sae(EvexModifierRounding::T_RU_SAE), T_rz_sae(EvexModifierRounding::T_RZ_SAE);
static const XBYAK_CONSTEXPR EvexModifierZero T_z;
#ifdef XBYAK64
static const XBYAK_CONSTEXPR Reg64 rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15);
static const XBYAK_CONSTEXPR Reg64 r16(16), r17(17), r18(18), r19(19), r20(20), r21(21), r22(22), r23(23), r24(24), r25(25), r26(26), r27(27), r28(28), r29(29), r30(30), r31(31);
static const XBYAK_CONSTEXPR Reg32 r8d(8), r9d(9), r10d(10), r11d(11), r12d(12), r13d(13), r14d(14), r15d(15);
static const XBYAK_CONSTEXPR Reg32 r16d(16), r17d(17), r18d(18), r19d(19), r20d(20), r21d(21), r22d(22), r23d(23), r24d(24), r25d(25), r26d(26), r27d(27), r28d(28), r29d(29), r30d(30), r31d(31);
static const XBYAK_CONSTEXPR Reg16 r8w(8), r9w(9), r10w(10), r11w(11), r12w(12), r13w(13), r14w(14), r15w(15);
static const XBYAK_CONSTEXPR Reg16 r16w(16), r17w(17), r18w(18), r19w(19), r20w(20), r21w(21), r22w(22), r23w(23), r24w(24), r25w(25), r26w(26), r27w(27), r28w(28), r29w(29), r30w(30), r31w(31);
static const XBYAK_CONSTEXPR Reg8 r8b(8), r9b(9), r10b(10), r11b(11), r12b(12), r13b(13), r14b(14), r15b(15), spl(Operand::SPL, true), bpl(Operand::BPL, true), sil(Operand::SIL, true), dil(Operand::DIL, true);
static const XBYAK_CONSTEXPR Reg8 r16b(16), r17b(17), r18b(18), r19b(19), r20b(20), r21b(21), r22b(22), r23b(23), r24b(24), r25b(25), r26b(26), r27b(27), r28b(28), r29b(29), r30b(30), r31b(31);
static const XBYAK_CONSTEXPR Xmm xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15);
static const XBYAK_CONSTEXPR Xmm xmm16(16), xmm17(17), xmm18(18), xmm19(19), xmm20(20), xmm21(21), xmm22(22), xmm23(23);
static const XBYAK_CONSTEXPR Xmm xmm24(24), xmm25(25), xmm26(26), xmm27(27), xmm28(28), xmm29(29), xmm30(30), xmm31(31);
static const XBYAK_CONSTEXPR Ymm ymm8(8), ymm9(9), ymm10(10), ymm11(11), ymm12(12), ymm13(13), ymm14(14), ymm15(15);
static const XBYAK_CONSTEXPR Ymm ymm16(16), ymm17(17), ymm18(18), ymm19(19), ymm20(20), ymm21(21), ymm22(22), ymm23(23);
static const XBYAK_CONSTEXPR Ymm ymm24(24), ymm25(25), ymm26(26), ymm27(27), ymm28(28), ymm29(29), ymm30(30), ymm31(31);
static const XBYAK_CONSTEXPR Zmm zmm8(8), zmm9(9), zmm10(10), zmm11(11), zmm12(12), zmm13(13), zmm14(14), zmm15(15);
static const XBYAK_CONSTEXPR Zmm zmm16(16), zmm17(17), zmm18(18), zmm19(19), zmm20(20), zmm21(21), zmm22(22), zmm23(23);
static const XBYAK_CONSTEXPR Zmm zmm24(24), zmm25(25), zmm26(26), zmm27(27), zmm28(28), zmm29(29), zmm30(30), zmm31(31);
static const XBYAK_CONSTEXPR Zmm tmm0(0), tmm1(1), tmm2(2), tmm3(3), tmm4(4), tmm5(5), tmm6(6), tmm7(7);
static const XBYAK_CONSTEXPR RegRip rip;
static const XBYAK_CONSTEXPR ApxFlagNF T_nf;
static const XBYAK_CONSTEXPR ApxFlagZU T_zu;
#endif
#ifndef XBYAK_DISABLE_SEGMENT
static const XBYAK_CONSTEXPR Segment es(Segment::es), cs(Segment::cs), ss(Segment::ss), ds(Segment::ds), fs(Segment::fs), gs(Segment::gs);
#endif
} // util
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
} // end of namespace
#endif // XBYAK_XBYAK_H_