* yuzu/bootmanager: Remove unnecessary pointer casts
We can just invoke these functions by qualifying the object name before
the function.
* yuzu/bootmanager: unsigned -> u32
Same thing (for platforms we support), less reading.
* yuzu/bootmanager: Default EmuThread's destructor in the cpp file
This class contains non-trivial members, so we should default the
destructor's definition within the cpp file.
* yuzu/bootmanager: Treat the resolution factor as a u32
Treating it as a u16 can result in a sign-conversion warning when
performing arithmetic with it, as u16 promotes to an int when aritmetic
is performed on it, not unsigned int.
This also makes the interface more uniform, as the layout interface now
operates on u32 across the board.
* yuzu/bootmanager: Log out screenshot destination path
We can make this message more meaningful by indicating the location the
screenshot has been saved to. We can also log out whenever a screenshot
could not be saved (e.g. due to filesystem permissions or some other
reason).
* Fix compilation
Enforces the use of the proper URL resolution functions. e.g.
url = some_local_path_string;
should actually be:
url = QUrl::fromLocalPath(some_local_path_string);
etc.
This makes it harder to cause bugs when operating with both strings and
URLs at the same time.
Other overloads of start() are considerably much safer to use if we ever
need this in the future and need to pass arguments to the program, given
it contains separate parameters for the program path and the arguments
themselves, whereas this unsafe overload contains both as a single
string.
Given the alternatives are much safer, we can disable this.
Currently, having a replacement code.bin causes Citra to crash as it is
trying to load icon data from code.bin because of a typo. This commit
fixes that typo.
By default, MSVC doesn't use standards-compliant volatile semantics.
This makes it behave in a standards-compliant manner, making
expectations more uniform across compilers.
The C++ standard allows constexpr variables declared with the extern
keyword to have external linkage. Previously MSVC wasn't abiding by
this. This just makes the compiler more standards compliant during
builds.
Given we currently don't make use of anything that would break by this,
this is safe to enable.
This is performing more work than would otherwise be necessary during
VMManager's destruction. All we actually want to occur in this scenario
is for any allocated memory to be freed, which will happen automatically
as the VMManager instance goes out of scope.
Anything else being done is simply unnecessary work.
* CMakeLists: Move compilation flags into the src directory
We generally shouldn't be hijacking CMAKE_CXX_FLAGS, etc as a means to
append flags to the targets, since this adds the compilation flags to
everything, including our externals, which can result in weird issues
and makes the build hierarchy fragile.
Instead, we want to just apply these compilation flags to our targets,
and let those managing external libraries to properly specify their
compilation flags.
This also results in us not getting as many warnings, as we don't raise
the warning level on every external target.
* CMakeLists: Move off of modifying CMAKE_*-related flags
Modifying CMAKE_* related flags directly applies those changes to every
single CMake target. This includes even the targets we have in the
externals directory.
So, if we ever increased our warning levels, or enabled particular ones,
or enabled any other compilation setting, then this would apply to
externals as well, which is often not desirable.
This makes our compilation flag setup less error prone by only applying
our settings to our targets and leaving the externals alone entirely.
This also means we don't end up clobbering any provided flags on the
command line either, allowing users to specifically use the flags they
want.
Makes the dependency explicit in the TelemetrySession's interface
instead of making it a hidden dependency.
This also revealed a hidden issue with the way the telemetry session was
being initialized. It was attempting to retrieve the app loader and log
out title-specific information. However, this isn't always guaranteed to
be possible.
During the initialization phase, everything is being constructed. It
doesn't mean an actual title has been selected. This is what the Load()
function is for. This potentially results in dead code paths involving
the app loader. Instead, we explicitly add this information when we know
the app loader instance is available.
A checkbox is able to be tri-state, giving it three possible activity
types, so in the connect call here, it would actually be truncating an
int into a bool.
Instead, we can just listen on the toggled() signal, which passes along
a bool, not an int.
* common/file_util: Make IOFile's WriteString take a std::string_view
We don't need to force the usage of a std::string here, and can instead
use a std::string_view, which allows writing out other forms of strings
(e.g. C-style strings) without any unnecessary heap allocations.
* common/file_util: Remove unnecessary c_str() calls
The file stream open functions have supported std::string overloads
since C++11, so we don't need to use c_str() here. Same behavior, less
code.
* common/file_util: Make ReadFileToString and WriteStringToFile consistent
Makes the parameter ordering consistent, and also makes the filename
parameter a std::string. A std::string would be constructed anyways with
the previous code, as IOFile's only constructor with a filepath is one
taking a std::string.
We can also make WriteStringToFile's string parameter utilize a
std::string_view for the string, making use of our previous changes to
IOFile.
* common/file_util: Remove duplicated documentation comments
These are already present within the header, so they don't need to be
repeated in the cpp file.
* common/file_util: Make GetCurrentDir() return a std::optional
nullptr was being returned in the error case, which, at a glance may
seem perfectly OK... until you realize that std::string has the
invariant that it may not be constructed from a null pointer. This
means that if this error case was ever hit, then the application would
most likely crash from a thrown exception in std::string's constructor.
Instead, we can change the function to return an optional value,
indicating if a failure occurred.
* common/file_util: Remove unnecessary return at end of void StripTailDirSlashes()
While we're at it, also invert the conditional into a guard clause.
critical() is intended for critical/fatal errors that threaten the
overall stability of an application. A user entering a conflicting key
sequence is neither of those.
Allows for things such as:
auto rect = Common::Rectangle{0, 0, 0, 0};
as opposed to being required to explicitly write out the underlying
type, such as:
auto rect = Common::Rectangle<int>{0, 0, 0, 0};
The only requirement for the deduction is that all constructor arguments
be the same type.
The previous code was all "smushed" together wasn't really grouped
together that well.
This spaces things out and separates them by relation to one another,
making it easier to visually parse the individual sections of code that
make up the constructor.